|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- import decagon_pytorch.convolve
- import decagon.deep.layers
- import torch
- import tensorflow as tf
- import numpy as np
-
-
- def prepare_data():
- np.random.seed(0)
- latent = np.random.random((5, 10)).astype(np.float32)
- latent[latent < .5] = 0
- latent = np.ceil(latent)
- adjacency_matrices = []
- for _ in range(5):
- adj_mat = np.random.random((len(latent),) * 2).astype(np.float32)
- adj_mat[adj_mat < .5] = 0
- adj_mat = np.ceil(adj_mat)
- adjacency_matrices.append(adj_mat)
- print('latent:', latent)
- print('adjacency_matrices[0]:', adjacency_matrices[0])
- return latent, adjacency_matrices
-
-
- def dense_to_sparse_tf(x):
- a, b = np.where(x)
- indices = np.array([a, b]).T
- values = x[a, b]
- return tf.sparse.SparseTensor(indices, values, x.shape)
-
-
- def dropout_sparse_tf(x, keep_prob, num_nonzero_elems):
- """Dropout for sparse tensors. Currently fails for very large sparse tensors (>1M elements)
- """
- noise_shape = [num_nonzero_elems]
- random_tensor = keep_prob
- random_tensor += tf.convert_to_tensor(torch.rand(noise_shape).detach().numpy())
- # tf.convert_to_tensor(np.random.random(noise_shape))
- # tf.random_uniform(noise_shape)
- dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
- pre_out = tf.sparse_retain(x, dropout_mask)
- return pre_out * (1./keep_prob)
-
-
- def dense_graph_conv_torch():
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- latent = torch.tensor(latent)
- adj_mat = adjacency_matrices[0]
- adj_mat = torch.tensor(adj_mat)
- conv = decagon_pytorch.convolve.DenseGraphConv(10, 10,
- adj_mat)
- latent = conv(latent)
- return latent
-
-
- def dense_dropout_graph_conv_activation_torch(keep_prob=1.):
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- latent = torch.tensor(latent)
- adj_mat = adjacency_matrices[0]
- adj_mat = torch.tensor(adj_mat)
- conv = decagon_pytorch.convolve.DenseDropoutGraphConvActivation(10, 10,
- adj_mat, keep_prob=keep_prob)
- latent = conv(latent)
- return latent
-
-
- def sparse_graph_conv_torch():
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- print('latent.dtype:', latent.dtype)
- latent = torch.tensor(latent).to_sparse()
- adj_mat = adjacency_matrices[0]
- adj_mat = torch.tensor(adj_mat).to_sparse()
- print('adj_mat.dtype:', adj_mat.dtype,
- 'latent.dtype:', latent.dtype)
- conv = decagon_pytorch.convolve.SparseGraphConv(10, 10,
- adj_mat)
- latent = conv(latent)
- return latent
-
-
- def sparse_graph_conv_tf():
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- conv_torch = decagon_pytorch.convolve.SparseGraphConv(10, 10,
- torch.tensor(adjacency_matrices[0]).to_sparse())
- weight = tf.constant(conv_torch.weight.detach().numpy())
- latent = dense_to_sparse_tf(latent)
- adj_mat = dense_to_sparse_tf(adjacency_matrices[0])
- latent = tf.sparse_tensor_dense_matmul(latent, weight)
- latent = tf.sparse_tensor_dense_matmul(adj_mat, latent)
- return latent
-
-
- def sparse_dropout_graph_conv_activation_torch(keep_prob=1.):
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- latent = torch.tensor(latent).to_sparse()
- adj_mat = adjacency_matrices[0]
- adj_mat = torch.tensor(adj_mat).to_sparse()
- conv = decagon_pytorch.convolve.SparseDropoutGraphConvActivation(10, 10,
- adj_mat, keep_prob=keep_prob)
- latent = conv(latent)
- return latent
-
-
- def sparse_dropout_graph_conv_activation_tf(keep_prob=1.):
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- conv_torch = decagon_pytorch.convolve.SparseGraphConv(10, 10,
- torch.tensor(adjacency_matrices[0]).to_sparse())
-
- weight = tf.constant(conv_torch.weight.detach().numpy())
- nonzero_feat = np.sum(latent > 0)
-
- latent = dense_to_sparse_tf(latent)
- latent = dropout_sparse_tf(latent, keep_prob,
- nonzero_feat)
-
- adj_mat = dense_to_sparse_tf(adjacency_matrices[0])
-
- latent = tf.sparse_tensor_dense_matmul(latent, weight)
- latent = tf.sparse_tensor_dense_matmul(adj_mat, latent)
-
- latent = tf.nn.relu(latent)
-
- return latent
-
-
- def test_sparse_graph_conv():
- latent_torch = sparse_graph_conv_torch()
- latent_tf = sparse_graph_conv_tf()
- assert np.all(latent_torch.detach().numpy() == latent_tf.eval(session = tf.Session()))
-
-
- def test_sparse_dropout_graph_conv_activation():
- for i in range(11):
- keep_prob = i/10. + np.finfo(np.float32).eps
-
- latent_torch = sparse_dropout_graph_conv_activation_torch(keep_prob)
- latent_tf = sparse_dropout_graph_conv_activation_tf(keep_prob)
-
- latent_torch = latent_torch.detach().numpy()
- latent_tf = latent_tf.eval(session = tf.Session())
- print('latent_torch:', latent_torch)
- print('latent_tf:', latent_tf)
-
- assert np.all(latent_torch - latent_tf < .000001)
-
-
- def test_sparse_multi_dgca():
- latent_torch = None
- latent_tf = []
-
- for i in range(11):
- keep_prob = i/10. + np.finfo(np.float32).eps
-
- latent_torch = sparse_dropout_graph_conv_activation_torch(keep_prob) \
- if latent_torch is None \
- else latent_torch + sparse_dropout_graph_conv_activation_torch(keep_prob)
-
- latent_tf.append(sparse_dropout_graph_conv_activation_tf(keep_prob))
-
- latent_torch = torch.nn.functional.normalize(latent_torch, p=2, dim=1)
- latent_tf = tf.add_n(latent_tf)
- latent_tf = tf.nn.l2_normalize(latent_tf, dim=1)
-
- latent_torch = latent_torch.detach().numpy()
- latent_tf = latent_tf.eval(session = tf.Session())
-
- assert np.all(latent_torch - latent_tf < .000001)
-
-
- def test_graph_conv():
- latent_dense = dense_graph_conv_torch()
- latent_sparse = sparse_graph_conv_torch()
-
- assert np.all(latent_dense.detach().numpy() == latent_sparse.detach().numpy())
-
-
- def setup_function(fun):
- if fun == test_dropout_graph_conv_activation or \
- fun == test_multi_dgca:
- print('Disabling dropout for testing...')
- setup_function.old_dropout = decagon_pytorch.convolve.dropout, \
- decagon_pytorch.convolve.dropout_sparse
-
- decagon_pytorch.convolve.dropout = lambda x, keep_prob: x
- decagon_pytorch.convolve.dropout_sparse = lambda x, keep_prob: x
-
-
- def teardown_function(fun):
- print('Re-enabling dropout...')
- if fun == test_dropout_graph_conv_activation or \
- fun == test_multi_dgca:
- decagon_pytorch.convolve.dropout, \
- decagon_pytorch.convolve.dropout_sparse = \
- setup_function.old_dropout
-
-
- def flexible_dropout_graph_conv_activation_torch(keep_prob=1.):
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
- latent = torch.tensor(latent).to_sparse()
- adj_mat = adjacency_matrices[0]
- adj_mat = torch.tensor(adj_mat).to_sparse()
- conv = decagon_pytorch.convolve.DropoutGraphConvActivation(10, 10,
- adj_mat, keep_prob=keep_prob)
- latent = conv(latent)
- return latent
-
-
- def test_dropout_graph_conv_activation():
- for i in range(11):
- keep_prob = i/10.
- if keep_prob == 0:
- keep_prob += np.finfo(np.float32).eps
- print('keep_prob:', keep_prob)
-
- latent_dense = dense_dropout_graph_conv_activation_torch(keep_prob)
- latent_dense = latent_dense.detach().numpy()
- print('latent_dense:', latent_dense)
-
- latent_sparse = sparse_dropout_graph_conv_activation_torch(keep_prob)
- latent_sparse = latent_sparse.detach().numpy()
- print('latent_sparse:', latent_sparse)
-
- latent_flex = flexible_dropout_graph_conv_activation_torch(keep_prob)
- latent_flex = latent_flex.detach().numpy()
- print('latent_flex:', latent_flex)
-
- nonzero = (latent_dense != 0) & (latent_sparse != 0)
-
- assert np.all(latent_dense[nonzero] == latent_sparse[nonzero])
-
- nonzero = (latent_dense != 0) & (latent_flex != 0)
-
- assert np.all(latent_dense[nonzero] == latent_flex[nonzero])
-
- nonzero = (latent_sparse != 0) & (latent_flex != 0)
-
- assert np.all(latent_sparse[nonzero] == latent_flex[nonzero])
-
-
- def test_multi_dgca():
- keep_prob = .5
-
- torch.random.manual_seed(0)
- latent, adjacency_matrices = prepare_data()
-
- latent_sparse = torch.tensor(latent).to_sparse()
- latent = torch.tensor(latent)
- assert np.all(latent_sparse.to_dense().numpy() == latent.numpy())
-
- adjacency_matrices_sparse = [ torch.tensor(a).to_sparse() for a in adjacency_matrices ]
- adjacency_matrices = [ torch.tensor(a) for a in adjacency_matrices ]
-
- for i in range(len(adjacency_matrices)):
- assert np.all(adjacency_matrices[i].numpy() == adjacency_matrices_sparse[i].to_dense().numpy())
-
- torch.random.manual_seed(0)
- multi_sparse = decagon_pytorch.convolve.SparseMultiDGCA([10,] * len(adjacency_matrices), 10, adjacency_matrices_sparse, keep_prob=keep_prob)
-
- torch.random.manual_seed(0)
- multi = decagon_pytorch.convolve.DenseMultiDGCA([10,] * len(adjacency_matrices), 10, adjacency_matrices, keep_prob=keep_prob)
-
- print('len(adjacency_matrices):', len(adjacency_matrices))
- print('len(multi_sparse.sparse_dgca):', len(multi_sparse.sparse_dgca))
- print('len(multi.dgca):', len(multi.dgca))
-
- for i in range(len(adjacency_matrices)):
- assert np.all(multi_sparse.sparse_dgca[i].sparse_graph_conv.weight.detach().numpy() == multi.dgca[i].graph_conv.weight.detach().numpy())
-
- # torch.random.manual_seed(0)
- latent_sparse = multi_sparse([latent_sparse,] * len(adjacency_matrices))
- # torch.random.manual_seed(0)
- latent = multi([latent,] * len(adjacency_matrices))
-
- assert np.all(latent_sparse.detach().numpy() == latent.detach().numpy())
|