|
12345678910111213141516171819202122 |
- # decagon-pytorch
-
- ## Introduction
-
- [Decagon](https://github.com/mims-harvard/decagon)
- is a method for learning node embeddings in multimodal graphs,
- and is especially useful for link prediction in highly multi-relational
- settings.
-
- Decagon-PyTorch is a PyTorch reimplementation of the algorithm.
-
- ## Citing
-
- If you use this code in your research please cite this repository as:
-
- Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch
-
- ## References
-
- 1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018).
- [Modeling polypharmacy side effects with graph convolutional networks](https://academic.oup.com/bioinformatics/article/34/13/i457/5045770)
- Bioinformatics, 34(13), i457-i466.
|