|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- from icosagon.decode import DEDICOMDecoder, \
- DistMultDecoder, \
- BilinearDecoder, \
- InnerProductDecoder
- import decagon_pytorch.decode.pairwise
- import torch
-
-
- def test_dedicom_decoder_01():
- repr_ = torch.rand(20, 32)
- dec_1 = DEDICOMDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
- dec_2 = decagon_pytorch.decode.pairwise.DEDICOMDecoder(32, 7, drop_prob=0.,
- activation=torch.sigmoid)
- dec_2.global_interaction = dec_1.global_interaction
- dec_2.local_variation = dec_1.local_variation
-
- res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ]
- res_2 = dec_2(repr_, repr_)
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] == res_2[i])
-
-
- def test_dist_mult_decoder_01():
- repr_ = torch.rand(20, 32)
- dec_1 = DistMultDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
- dec_2 = decagon_pytorch.decode.pairwise.DistMultDecoder(32, 7, drop_prob=0.,
- activation=torch.sigmoid)
- dec_2.relation = dec_1.relation
-
- res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ]
- res_2 = dec_2(repr_, repr_)
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] == res_2[i])
-
-
- def test_bilinear_decoder_01():
- repr_ = torch.rand(20, 32)
- dec_1 = BilinearDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
- dec_2 = decagon_pytorch.decode.pairwise.BilinearDecoder(32, 7, drop_prob=0.,
- activation=torch.sigmoid)
- dec_2.relation = dec_1.relation
-
- res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ]
- res_2 = dec_2(repr_, repr_)
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] == res_2[i])
-
-
- def test_inner_product_decoder_01():
- repr_ = torch.rand(20, 32)
- dec_1 = InnerProductDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
- dec_2 = decagon_pytorch.decode.pairwise.InnerProductDecoder(32, 7, drop_prob=0.,
- activation=torch.sigmoid)
-
- res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ]
- res_2 = dec_2(repr_, repr_)
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] == res_2[i])
-
-
- def test_is_dedicom_not_symmetric_01():
- repr_1 = torch.rand(20, 32)
- repr_2 = torch.rand(20, 32)
- dec = DEDICOMDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ]
- res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ]
-
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert not torch.all(res_1[i] - res_2[i] < 0.000001)
-
-
- def test_is_dist_mult_symmetric_01():
- repr_1 = torch.rand(20, 32)
- repr_2 = torch.rand(20, 32)
- dec = DistMultDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ]
- res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ]
-
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] - res_2[i] < 0.000001)
-
-
- def test_is_bilinear_not_symmetric_01():
- repr_1 = torch.rand(20, 32)
- repr_2 = torch.rand(20, 32)
- dec = BilinearDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ]
- res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ]
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert not torch.all(res_1[i] - res_2[i] < 0.000001)
-
-
- def test_is_inner_product_symmetric_01():
- repr_1 = torch.rand(20, 32)
- repr_2 = torch.rand(20, 32)
- dec = InnerProductDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ]
- res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ]
-
- assert isinstance(res_1, list)
- assert isinstance(res_2, list)
-
- assert len(res_1) == len(res_2)
-
- for i in range(len(res_1)):
- assert torch.all(res_1[i] - res_2[i] < 0.000001)
-
-
- def test_empty_dedicom_decoder_01():
- repr_ = torch.rand(0, 32)
- dec = DEDICOMDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res = [ dec(repr_, repr_, k) for k in range(7) ]
-
- assert isinstance(res, list)
-
- for i in range(len(res)):
- assert res[i].shape == (0,)
-
-
- def test_empty_dist_mult_decoder_01():
- repr_ = torch.rand(0, 32)
- dec = DistMultDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res = [ dec(repr_, repr_, k) for k in range(7) ]
-
- assert isinstance(res, list)
-
- for i in range(len(res)):
- assert res[i].shape == (0,)
-
-
- def test_empty_bilinear_decoder_01():
- repr_ = torch.rand(0, 32)
- dec = BilinearDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res = [ dec(repr_, repr_, k) for k in range(7) ]
-
- assert isinstance(res, list)
-
- for i in range(len(res)):
- assert res[i].shape == (0,)
-
-
- def test_empty_inner_product_decoder_01():
- repr_ = torch.rand(0, 32)
- dec = InnerProductDecoder(32, 7, keep_prob=1.,
- activation=torch.sigmoid)
-
- res = [ dec(repr_, repr_, k) for k in range(7) ]
-
- assert isinstance(res, list)
-
- for i in range(len(res)):
- assert res[i].shape == (0,)
|