IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

test_layer_convolve.py 5.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. from decagon_pytorch.layer import InputLayer, \
  2. OneHotInputLayer, \
  3. DecagonLayer
  4. from decagon_pytorch.data import Data
  5. import torch
  6. import pytest
  7. from decagon_pytorch.convolve import SparseDropoutGraphConvActivation, \
  8. SparseMultiDGCA, \
  9. DropoutGraphConvActivation
  10. def _some_data():
  11. d = Data()
  12. d.add_node_type('Gene', 1000)
  13. d.add_node_type('Drug', 100)
  14. d.add_relation_type('Target', 1, 0, None)
  15. d.add_relation_type('Interaction', 0, 0, None)
  16. d.add_relation_type('Side Effect: Nausea', 1, 1, None)
  17. d.add_relation_type('Side Effect: Infertility', 1, 1, None)
  18. d.add_relation_type('Side Effect: Death', 1, 1, None)
  19. return d
  20. def _some_data_with_interactions():
  21. d = Data()
  22. d.add_node_type('Gene', 1000)
  23. d.add_node_type('Drug', 100)
  24. d.add_relation_type('Target', 1, 0,
  25. torch.rand((100, 1000), dtype=torch.float32).round())
  26. d.add_relation_type('Interaction', 0, 0,
  27. torch.rand((1000, 1000), dtype=torch.float32).round())
  28. d.add_relation_type('Side Effect: Nausea', 1, 1,
  29. torch.rand((100, 100), dtype=torch.float32).round())
  30. d.add_relation_type('Side Effect: Infertility', 1, 1,
  31. torch.rand((100, 100), dtype=torch.float32).round())
  32. d.add_relation_type('Side Effect: Death', 1, 1,
  33. torch.rand((100, 100), dtype=torch.float32).round())
  34. return d
  35. def test_decagon_layer_01():
  36. d = _some_data_with_interactions()
  37. in_layer = InputLayer(d)
  38. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  39. def test_decagon_layer_02():
  40. d = _some_data_with_interactions()
  41. in_layer = OneHotInputLayer(d)
  42. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  43. _ = d_layer() # dummy call
  44. def test_decagon_layer_03():
  45. d = _some_data_with_interactions()
  46. in_layer = OneHotInputLayer(d)
  47. d_layer = DecagonLayer(d, in_layer, output_dim=32)
  48. assert d_layer.data == d
  49. assert d_layer.previous_layer == in_layer
  50. assert d_layer.input_dim == [ 1000, 100 ]
  51. assert not d_layer.is_sparse
  52. assert d_layer.keep_prob == 1.
  53. assert d_layer.rel_activation(0.5) == 0.5
  54. x = torch.tensor([-1, 0, 0.5, 1])
  55. assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
  56. assert len(d_layer.next_layer_repr) == 2
  57. for i in range(2):
  58. assert len(d_layer.next_layer_repr[i]) == 2
  59. assert isinstance(d_layer.next_layer_repr[i], list)
  60. assert isinstance(d_layer.next_layer_repr[i][0], tuple)
  61. assert isinstance(d_layer.next_layer_repr[i][0][0], list)
  62. assert isinstance(d_layer.next_layer_repr[i][0][1], int)
  63. assert all([
  64. isinstance(dgca, DropoutGraphConvActivation) \
  65. for dgca in d_layer.next_layer_repr[i][0][0]
  66. ])
  67. assert all([
  68. dgca.output_dim == 32 \
  69. for dgca in d_layer.next_layer_repr[i][0][0]
  70. ])
  71. def test_decagon_layer_04():
  72. # check if it is equivalent to MultiDGCA, as it should be
  73. d = Data()
  74. d.add_node_type('Dummy', 100)
  75. d.add_relation_type('Dummy Relation', 0, 0,
  76. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  77. in_layer = OneHotInputLayer(d)
  78. multi_dgca = SparseMultiDGCA([10], 32,
  79. [r.adjacency_matrix for r in d.relation_types[0, 0]],
  80. keep_prob=1., activation=lambda x: x)
  81. d_layer = DecagonLayer(d, in_layer, output_dim=32,
  82. keep_prob=1., rel_activation=lambda x: x,
  83. layer_activation=lambda x: x)
  84. assert isinstance(d_layer.next_layer_repr[0][0][0][0],
  85. DropoutGraphConvActivation)
  86. weight = d_layer.next_layer_repr[0][0][0][0].graph_conv.weight
  87. assert isinstance(weight, torch.Tensor)
  88. assert len(multi_dgca.sparse_dgca) == 1
  89. assert isinstance(multi_dgca.sparse_dgca[0], SparseDropoutGraphConvActivation)
  90. multi_dgca.sparse_dgca[0].sparse_graph_conv.weight = weight
  91. out_d_layer = d_layer()
  92. out_multi_dgca = multi_dgca(in_layer())
  93. assert isinstance(out_d_layer, list)
  94. assert len(out_d_layer) == 1
  95. assert torch.all(out_d_layer[0] == out_multi_dgca)
  96. def test_decagon_layer_05():
  97. # check if it is equivalent to MultiDGCA, as it should be
  98. # this time for two relations, same edge type
  99. d = Data()
  100. d.add_node_type('Dummy', 100)
  101. d.add_relation_type('Dummy Relation 1', 0, 0,
  102. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  103. d.add_relation_type('Dummy Relation 2', 0, 0,
  104. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  105. in_layer = OneHotInputLayer(d)
  106. multi_dgca = SparseMultiDGCA([100, 100], 32,
  107. [r.adjacency_matrix for r in d.relation_types[0, 0]],
  108. keep_prob=1., activation=lambda x: x)
  109. d_layer = DecagonLayer(d, in_layer, output_dim=32,
  110. keep_prob=1., rel_activation=lambda x: x,
  111. layer_activation=lambda x: x)
  112. assert all([
  113. isinstance(dgca, DropoutGraphConvActivation) \
  114. for dgca in d_layer.next_layer_repr[0][0][0]
  115. ])
  116. weight = [ dgca.graph_conv.weight \
  117. for dgca in d_layer.next_layer_repr[0][0][0] ]
  118. assert all([
  119. isinstance(w, torch.Tensor) \
  120. for w in weight
  121. ])
  122. assert len(multi_dgca.sparse_dgca) == 2
  123. for i in range(2):
  124. assert isinstance(multi_dgca.sparse_dgca[i], SparseDropoutGraphConvActivation)
  125. for i in range(2):
  126. multi_dgca.sparse_dgca[i].sparse_graph_conv.weight = weight[i]
  127. out_d_layer = d_layer()
  128. x = in_layer()
  129. out_multi_dgca = multi_dgca([ x[0], x[0] ])
  130. assert isinstance(out_d_layer, list)
  131. assert len(out_d_layer) == 1
  132. assert torch.all(out_d_layer[0] == out_multi_dgca)