IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

test_decode_dims.py 3.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. from decagon_pytorch.decode.cartesian import DEDICOMDecoder, \
  2. DistMultDecoder, \
  3. BilinearDecoder, \
  4. InnerProductDecoder
  5. import torch
  6. def _common(decoder_class):
  7. decoder = decoder_class(input_dim=10, num_relation_types=1)
  8. inputs = torch.rand((20, 10))
  9. pred = decoder(inputs, inputs)
  10. assert isinstance(pred, list)
  11. assert len(pred) == 1
  12. assert isinstance(pred[0], torch.Tensor)
  13. assert pred[0].shape == (20, 20)
  14. def test_dedicom_decoder():
  15. _common(DEDICOMDecoder)
  16. def test_dist_mult_decoder():
  17. _common(DistMultDecoder)
  18. def test_bilinear_decoder():
  19. _common(BilinearDecoder)
  20. def test_inner_product_decoder():
  21. _common(InnerProductDecoder)
  22. def test_batch_matrix_multiplication():
  23. input_dim = 10
  24. inputs = torch.rand((20, 10))
  25. decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
  26. out_dec = decoder(inputs, inputs)
  27. relation = decoder.local_variation[0]
  28. global_interaction = decoder.global_interaction
  29. act = decoder.activation
  30. relation = torch.diag(relation)
  31. product1 = torch.mm(inputs, relation)
  32. product2 = torch.mm(product1, global_interaction)
  33. product3 = torch.mm(product2, relation)
  34. rec = torch.mm(product3, torch.transpose(inputs, 0, 1))
  35. rec = act(rec)
  36. print('rec:', rec)
  37. print('out_dec:', out_dec)
  38. assert torch.all(rec == out_dec[0])
  39. def test_single_prediction_01():
  40. input_dim = 10
  41. inputs = torch.rand((20, 10))
  42. decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
  43. dec_all = decoder(inputs, inputs)
  44. dec_one = decoder(inputs[0:1], inputs[0:1])
  45. assert torch.abs(dec_all[0][0, 0] - dec_one[0][0, 0]) < 0.000001
  46. def test_single_prediction_02():
  47. input_dim = 10
  48. inputs = torch.rand((20, 10))
  49. decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
  50. dec_all = decoder(inputs, inputs)
  51. dec_one = decoder(inputs[0:1], inputs[1:2])
  52. assert torch.abs(dec_all[0][0, 1] - dec_one[0][0, 0]) < 0.000001
  53. assert dec_one[0].shape == (1, 1)
  54. def test_pairwise_prediction():
  55. n_nodes = 20
  56. input_dim = 10
  57. inputs_row = torch.rand((n_nodes, input_dim))
  58. inputs_col = torch.rand((n_nodes, input_dim))
  59. decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
  60. dec_all = decoder(inputs_row, inputs_col)
  61. relation = torch.diag(decoder.local_variation[0])
  62. global_interaction = decoder.global_interaction
  63. act = decoder.activation
  64. product1 = torch.mm(inputs_row, relation)
  65. product2 = torch.mm(product1, global_interaction)
  66. product3 = torch.mm(product2, relation)
  67. rec = torch.bmm(product3.view(product3.shape[0], 1, product3.shape[1]),
  68. inputs_col.view(inputs_col.shape[0], inputs_col.shape[1], 1))
  69. assert rec.shape == (n_nodes, 1, 1)
  70. rec = torch.flatten(rec)
  71. rec = act(rec)
  72. assert torch.all(torch.abs(rec - torch.diag(dec_all[0])) < 0.000001)