IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import torch
  6. from typing import Union, \
  7. List
  8. from .data import Data
  9. class InputLayer(torch.nn.Module):
  10. def __init__(self, data: Data, output_dim: Union[int, List[int]] = None,
  11. **kwargs) -> None:
  12. output_dim = output_dim or \
  13. list(map(lambda a: a.count, data.node_types))
  14. if not isinstance(output_dim, list):
  15. output_dim = [output_dim,] * len(data.node_types)
  16. super().__init__(**kwargs)
  17. self.output_dim = output_dim
  18. self.data = data
  19. self.is_sparse=False
  20. self.node_reps = None
  21. self.build()
  22. def build(self) -> None:
  23. self.node_reps = []
  24. for i, nt in enumerate(self.data.node_types):
  25. reps = torch.rand(nt.count, self.output_dim[i])
  26. reps = torch.nn.Parameter(reps)
  27. self.register_parameter('node_reps[%d]' % i, reps)
  28. self.node_reps.append(reps)
  29. def forward(self, x) -> List[torch.nn.Parameter]:
  30. return self.node_reps
  31. def __repr__(self) -> str:
  32. s = ''
  33. s += 'Icosagon input layer with output_dim: %s\n' % self.output_dim
  34. s += ' # of node types: %d\n' % len(self.data.node_types)
  35. for nt in self.data.node_types:
  36. s += ' - %s (%d)\n' % (nt.name, nt.count)
  37. return s.strip()
  38. class OneHotInputLayer(torch.nn.Module):
  39. def __init__(self, data: Data, **kwargs) -> None:
  40. output_dim = [ a.count for a in data.node_types ]
  41. super().__init__(**kwargs)
  42. self.output_dim = output_dim
  43. self.data = data
  44. self.is_sparse=True
  45. self.node_reps = None
  46. self.build()
  47. def build(self) -> None:
  48. self.node_reps = torch.nn.ParameterList()
  49. for i, nt in enumerate(self.data.node_types):
  50. reps = torch.eye(nt.count).to_sparse()
  51. reps = torch.nn.Parameter(reps, requires_grad=False)
  52. # self.register_parameter('node_reps[%d]' % i, reps)
  53. self.node_reps.append(reps)
  54. def forward(self, x) -> List[torch.nn.Parameter]:
  55. return self.node_reps
  56. def __repr__(self) -> str:
  57. s = ''
  58. s += 'Icosagon one-hot input layer\n'
  59. s += ' # of node types: %d\n' % len(self.data.node_types)
  60. for nt in self.data.node_types:
  61. s += ' - %s (%d)\n' % (nt.name, nt.count)
  62. return s.strip()