IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

sampling.py 4.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. def fixed_unigram_candidate_sampler(
  14. true_classes: Union[np.array, torch.Tensor],
  15. unigrams: List[Union[int, float]],
  16. distortion: float = 1.):
  17. if isinstance(true_classes, torch.Tensor):
  18. true_classes = true_classes.detach().cpu().numpy()
  19. if isinstance(unigrams, torch.Tensor):
  20. unigrams = unigrams.detach().cpu().numpy()
  21. if len(true_classes.shape) != 2:
  22. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  23. num_samples = true_classes.shape[0]
  24. unigrams = np.array(unigrams)
  25. if distortion != 1.:
  26. unigrams = unigrams.astype(np.float64) ** distortion
  27. # print('unigrams:', unigrams)
  28. indices = np.arange(num_samples)
  29. result = np.zeros(num_samples, dtype=np.int64)
  30. while len(indices) > 0:
  31. # print('len(indices):', len(indices))
  32. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  33. candidates = np.array(list(sampler))
  34. candidates = np.reshape(candidates, (len(indices), 1))
  35. # print('candidates:', candidates)
  36. # print('true_classes:', true_classes[indices, :])
  37. result[indices] = candidates.T
  38. # print('result:', result)
  39. mask = (candidates == true_classes[indices, :])
  40. mask = mask.sum(1).astype(np.bool)
  41. # print('mask:', mask)
  42. indices = indices[mask]
  43. # result[indices] = 0
  44. return torch.tensor(result)
  45. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  46. Tuple[torch.Tensor, torch.Tensor]:
  47. if adj_mat.is_sparse:
  48. adj_mat = adj_mat.coalesce()
  49. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  50. device=adj_mat.device)
  51. degrees = degrees.index_add(0, adj_mat.indices()[1],
  52. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  53. device=adj_mat.device))
  54. edges_pos = adj_mat.indices().transpose(0, 1)
  55. else:
  56. degrees = adj_mat.sum(0)
  57. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  58. return edges_pos, degrees
  59. def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
  60. if not isinstance(adj_mat, torch.Tensor):
  61. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  62. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  63. neg_neighbors = fixed_unigram_candidate_sampler(
  64. edges_pos[:, 1].view(-1, 1), degrees, 0.75).to(adj_mat.device)
  65. edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
  66. neg_neighbors.view(-1, 1) ], 1)
  67. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  68. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  69. dtype=adj_mat.dtype, device=adj_mat.device)
  70. adj_mat_neg = adj_mat_neg.coalesce()
  71. indices = adj_mat_neg.indices()
  72. adj_mat_neg = torch.sparse_coo_tensor(indices,
  73. torch.ones(indices.shape[1]), adj_mat.shape,
  74. dtype=adj_mat.dtype, device=adj_mat.device)
  75. adj_mat_neg = adj_mat_neg.coalesce()
  76. return adj_mat_neg
  77. def negative_sample_data(data: Data) -> Data:
  78. new_edge_types = {}
  79. res = Data()
  80. for vt in data.vertex_types:
  81. res.add_vertex_type(vt.name, vt.count)
  82. for key, et in data.edge_types.items():
  83. adjacency_matrices_neg = []
  84. for adj_mat in et.adjacency_matrices:
  85. adj_mat_neg = negative_sample_adj_mat(adj_mat)
  86. adjacency_matrices_neg.append(adj_mat_neg)
  87. res.add_edge_type(et.name,
  88. et.vertex_type_row, et.vertex_type_column,
  89. adjacency_matrices_neg, et.decoder_factory)
  90. #new_et = EdgeType(et.name, et.vertex_type_row,
  91. # et.vertex_type_column, adjacency_matrices_neg,
  92. # et.decoder_factory, et.total_connectivity)
  93. #new_edge_types[key] = new_et
  94. #res = Data(data.vertex_types, new_edge_types)
  95. return res