|
|
@@ -24,75 +24,73 @@ struct stable_sort_impl_cuda { |
|
|
|
if (out != torch::nullopt)
|
|
|
|
throw std::runtime_error("out argument is not supported");
|
|
|
|
|
|
|
|
auto x = input.clone();
|
|
|
|
auto values = input.clone();
|
|
|
|
|
|
|
|
if (dim != -1)
|
|
|
|
x = torch::transpose(x, dim, -1);
|
|
|
|
values = torch::transpose(values, dim, -1);
|
|
|
|
|
|
|
|
auto x_sizes = x.sizes();
|
|
|
|
auto values_sizes = values.sizes();
|
|
|
|
|
|
|
|
x = x.view({ -1, x.size(-1) }).contiguous();
|
|
|
|
values = values.view({ -1, values.size(-1) }).contiguous();
|
|
|
|
|
|
|
|
auto x_outer_stride = x.stride(-2);
|
|
|
|
auto x_inner_stride = x.stride(-1);
|
|
|
|
auto n_cols = x.size(1);
|
|
|
|
auto n_rows = x.size(0);
|
|
|
|
auto px = x.data_ptr<T>();
|
|
|
|
auto n_cols = values.size(1);
|
|
|
|
auto n_rows = values.size(0);
|
|
|
|
|
|
|
|
assert(x_inner_stride == 1);
|
|
|
|
assert(values.stride(-2) == n_cols);
|
|
|
|
assert(values.stride(-1) == 1);
|
|
|
|
|
|
|
|
auto y = torch::repeat_interleave(
|
|
|
|
auto values_ptr = values.data_ptr<T>();
|
|
|
|
|
|
|
|
auto indices = torch::repeat_interleave(
|
|
|
|
torch::arange(0, n_cols, 1, torch::TensorOptions()
|
|
|
|
.dtype(torch::kInt64)
|
|
|
|
.device(x.device())).view({ 1, -1 }),
|
|
|
|
.device(values.device())).view({ 1, -1 }),
|
|
|
|
n_rows,
|
|
|
|
0 /* dim */
|
|
|
|
);
|
|
|
|
|
|
|
|
auto y_outer_stride = y.stride(-2);
|
|
|
|
auto y_inner_stride = y.stride(-1);
|
|
|
|
auto py = y.data_ptr<int64_t>();
|
|
|
|
|
|
|
|
assert(y_inner_stride == 1);
|
|
|
|
|
|
|
|
#define NUM_STREAMS 16
|
|
|
|
cudaStream_t streams[NUM_STREAMS];
|
|
|
|
for(int i = 0; i < NUM_STREAMS; i++)
|
|
|
|
assert(cudaStreamCreate(&streams[i]) == cudaSuccess);
|
|
|
|
|
|
|
|
thrust::host_vector<int64_t> row_indices(n_rows);
|
|
|
|
thrust::sequence(row_indices.begin(), row_indices.end());
|
|
|
|
thrust::for_each(thrust::host, row_indices.begin(), row_indices.end(),
|
|
|
|
[&streams, py, y_outer_stride, px, x_outer_stride, x_inner_stride, n_cols](int64_t i) {
|
|
|
|
auto ind_beg = thrust::device_pointer_cast(py + i * y_outer_stride);
|
|
|
|
|
|
|
|
auto val_beg = thrust::device_pointer_cast(px + i * x_outer_stride);
|
|
|
|
auto val_end = thrust::device_pointer_cast(px + i * x_outer_stride +
|
|
|
|
n_cols * x_inner_stride);
|
|
|
|
|
|
|
|
if (descending)
|
|
|
|
thrust::stable_sort_by_key(thrust::cuda::par.on(streams[i % NUM_STREAMS]), val_beg, val_end, ind_beg,
|
|
|
|
thrust::greater<T>());
|
|
|
|
else
|
|
|
|
thrust::stable_sort_by_key(thrust::cuda::par.on(streams[i % NUM_STREAMS]), val_beg, val_end, ind_beg);
|
|
|
|
});
|
|
|
|
cudaDeviceSynchronize();
|
|
|
|
assert(indices.stride(-2) == n_cols);
|
|
|
|
assert(indices.stride(-1) == 1);
|
|
|
|
auto indices_ptr = indices.data_ptr<int64_t>();
|
|
|
|
|
|
|
|
auto n = n_rows * n_cols;
|
|
|
|
|
|
|
|
auto ind_beg = thrust::device_pointer_cast(indices_ptr);
|
|
|
|
auto val_beg = thrust::device_pointer_cast(values_ptr);
|
|
|
|
|
|
|
|
if (descending)
|
|
|
|
thrust::stable_sort_by_key(thrust::device, val_beg, val_beg + n, ind_beg, thrust::greater<T>());
|
|
|
|
else
|
|
|
|
thrust::stable_sort_by_key(thrust::device, val_beg, val_beg + n, ind_beg);
|
|
|
|
|
|
|
|
thrust::device_vector<int64_t> segments(n);
|
|
|
|
thrust::constant_iterator<int64_t> n_cols_iter(n_cols);
|
|
|
|
thrust::transform(thrust::device,
|
|
|
|
ind_beg, ind_beg + n, n_cols_iter,
|
|
|
|
segments.begin(), thrust::divides<int64_t>());
|
|
|
|
|
|
|
|
for(int i = 0; i < NUM_STREAMS; i++)
|
|
|
|
assert(cudaStreamDestroy(streams[i]) == cudaSuccess);
|
|
|
|
thrust::stable_sort_by_key(thrust::device, segments.begin(),
|
|
|
|
segments.end(), val_beg);
|
|
|
|
|
|
|
|
x = x.view(x_sizes);
|
|
|
|
y = y.view(x_sizes);
|
|
|
|
thrust::transform(thrust::device,
|
|
|
|
ind_beg, ind_beg + n, n_cols_iter,
|
|
|
|
segments.begin(), thrust::modulus<int64_t>());
|
|
|
|
|
|
|
|
x = (dim == -1) ?
|
|
|
|
x :
|
|
|
|
torch::transpose(x, dim, -1).contiguous();
|
|
|
|
thrust::stable_sort_by_key(thrust::device, segments.begin(),
|
|
|
|
segments.end(), ind_beg);
|
|
|
|
|
|
|
|
y = (dim == -1) ?
|
|
|
|
y :
|
|
|
|
torch::transpose(y, dim, -1).contiguous();
|
|
|
|
cudaDeviceSynchronize();
|
|
|
|
|
|
|
|
values = values.view(values_sizes);
|
|
|
|
indices = indices.view(values_sizes);
|
|
|
|
|
|
|
|
if (dim != -1)
|
|
|
|
values = torch::transpose(values, dim, -1).contiguous();
|
|
|
|
|
|
|
|
if (dim != -1)
|
|
|
|
indices = torch::transpose(indices, dim, -1).contiguous();
|
|
|
|
|
|
|
|
return { x, y };
|
|
|
|
return { values, indices };
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|