from icosagon.decode import DEDICOMDecoder, \ DistMultDecoder, \ BilinearDecoder, \ InnerProductDecoder import decagon_pytorch.decode.pairwise import torch def test_dedicom_decoder_01(): repr_ = torch.rand(20, 32) dec_1 = DEDICOMDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) dec_2 = decagon_pytorch.decode.pairwise.DEDICOMDecoder(32, 7, drop_prob=0., activation=torch.sigmoid) dec_2.global_interaction = dec_1.global_interaction dec_2.local_variation = dec_1.local_variation res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ] res_2 = dec_2(repr_, repr_) assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] == res_2[i]) def test_dist_mult_decoder_01(): repr_ = torch.rand(20, 32) dec_1 = DistMultDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) dec_2 = decagon_pytorch.decode.pairwise.DistMultDecoder(32, 7, drop_prob=0., activation=torch.sigmoid) dec_2.relation = dec_1.relation res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ] res_2 = dec_2(repr_, repr_) assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] == res_2[i]) def test_bilinear_decoder_01(): repr_ = torch.rand(20, 32) dec_1 = BilinearDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) dec_2 = decagon_pytorch.decode.pairwise.BilinearDecoder(32, 7, drop_prob=0., activation=torch.sigmoid) dec_2.relation = dec_1.relation res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ] res_2 = dec_2(repr_, repr_) assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] == res_2[i]) def test_inner_product_decoder_01(): repr_ = torch.rand(20, 32) dec_1 = InnerProductDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) dec_2 = decagon_pytorch.decode.pairwise.InnerProductDecoder(32, 7, drop_prob=0., activation=torch.sigmoid) res_1 = [ dec_1(repr_, repr_, k) for k in range(7) ] res_2 = dec_2(repr_, repr_) assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] == res_2[i]) def test_is_dedicom_not_symmetric_01(): repr_1 = torch.rand(20, 32) repr_2 = torch.rand(20, 32) dec = DEDICOMDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ] res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ] assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert not torch.all(res_1[i] - res_2[i] < 0.000001) def test_is_dist_mult_symmetric_01(): repr_1 = torch.rand(20, 32) repr_2 = torch.rand(20, 32) dec = DistMultDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ] res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ] assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] - res_2[i] < 0.000001) def test_is_bilinear_not_symmetric_01(): repr_1 = torch.rand(20, 32) repr_2 = torch.rand(20, 32) dec = BilinearDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ] res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ] assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert not torch.all(res_1[i] - res_2[i] < 0.000001) def test_is_inner_product_symmetric_01(): repr_1 = torch.rand(20, 32) repr_2 = torch.rand(20, 32) dec = InnerProductDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res_1 = [ dec(repr_1, repr_2, k) for k in range(7) ] res_2 = [ dec(repr_2, repr_1, k) for k in range(7) ] assert isinstance(res_1, list) assert isinstance(res_2, list) assert len(res_1) == len(res_2) for i in range(len(res_1)): assert torch.all(res_1[i] - res_2[i] < 0.000001) def test_empty_dedicom_decoder_01(): repr_ = torch.rand(0, 32) dec = DEDICOMDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res = [ dec(repr_, repr_, k) for k in range(7) ] assert isinstance(res, list) for i in range(len(res)): assert res[i].shape == (0,) def test_empty_dist_mult_decoder_01(): repr_ = torch.rand(0, 32) dec = DistMultDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res = [ dec(repr_, repr_, k) for k in range(7) ] assert isinstance(res, list) for i in range(len(res)): assert res[i].shape == (0,) def test_empty_bilinear_decoder_01(): repr_ = torch.rand(0, 32) dec = BilinearDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res = [ dec(repr_, repr_, k) for k in range(7) ] assert isinstance(res, list) for i in range(len(res)): assert res[i].shape == (0,) def test_empty_inner_product_decoder_01(): repr_ = torch.rand(0, 32) dec = InnerProductDecoder(32, 7, keep_prob=1., activation=torch.sigmoid) res = [ dec(repr_, repr_, k) for k in range(7) ] assert isinstance(res, list) for i in range(len(res)): assert res[i].shape == (0,)