from icosagon.fastconv import _sparse_diag_cat, \ _cat, \ FastGraphConv from icosagon.data import _equal import torch import pdb import time def test_sparse_diag_cat_01(): matrices = [ torch.rand(5, 10).round() for _ in range(7) ] ground_truth = torch.zeros(35, 70) ground_truth[0:5, 0:10] = matrices[0] ground_truth[5:10, 10:20] = matrices[1] ground_truth[10:15, 20:30] = matrices[2] ground_truth[15:20, 30:40] = matrices[3] ground_truth[20:25, 40:50] = matrices[4] ground_truth[25:30, 50:60] = matrices[5] ground_truth[30:35, 60:70] = matrices[6] res = _sparse_diag_cat([ m.to_sparse() for m in matrices ]) res = res.to_dense() assert torch.all(res == ground_truth) def test_sparse_diag_cat_02(): x = [ torch.rand(5, 10).round() for _ in range(7) ] a = [ m.to_sparse() for m in x ] a = _sparse_diag_cat(a) b = torch.rand(70, 64) res = torch.sparse.mm(a, b) ground_truth = torch.zeros(35, 64) ground_truth[0:5, :] = torch.mm(x[0], b[0:10]) ground_truth[5:10, :] = torch.mm(x[1], b[10:20]) ground_truth[10:15, :] = torch.mm(x[2], b[20:30]) ground_truth[15:20, :] = torch.mm(x[3], b[30:40]) ground_truth[20:25, :] = torch.mm(x[4], b[40:50]) ground_truth[25:30, :] = torch.mm(x[5], b[50:60]) ground_truth[30:35, :] = torch.mm(x[6], b[60:70]) assert torch.all(res == ground_truth) def test_cat_01(): matrices = [ torch.rand(5, 10) for _ in range(7) ] res = _cat(matrices) assert res.shape == (35, 10) assert not res.is_sparse ground_truth = torch.zeros(35, 10) for i in range(7): ground_truth[i*5:(i+1)*5, :] = matrices[i] assert torch.all(res == ground_truth) def test_cat_02(): matrices = [ torch.rand(5, 10) for _ in range(7) ] ground_truth = torch.zeros(35, 10) for i in range(7): ground_truth[i*5:(i+1)*5, :] = matrices[i] res = _cat([ m.to_sparse() for m in matrices ]) assert res.shape == (35, 10) assert res.is_sparse assert torch.all(res.to_dense() == ground_truth) def test_fast_graph_conv_01(): # pdb.set_trace() adj_mats = [ torch.rand(10, 15).round().to_sparse() \ for _ in range(23) ] fgc = FastGraphConv(32, 64, adj_mats) in_repr = torch.rand(15, 32) _ = fgc(in_repr) def test_fast_graph_conv_02(): t = time.time() m = (torch.rand(2000, 2000) < .001).to(torch.float32).to_sparse() adj_mats = [ m for _ in range(1300) ] print('Generating adj_mats took:', time.time() - t) t = time.time() fgc = FastGraphConv(32, 64, adj_mats) print('FGC constructor took:', time.time() - t) in_repr = torch.rand(2000, 32) for _ in range(3): t = time.time() _ = fgc(in_repr) print('FGC forward pass took:', time.time() - t)