IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
5.8KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. from .cumcount import cumcount
  14. import time
  15. def fixed_unigram_candidate_sampler(
  16. true_classes: torch.Tensor,
  17. num_repeats: torch.Tensor,
  18. unigrams: torch.Tensor,
  19. distortion: float = 1.):
  20. if len(true_classes.shape) != 2:
  21. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  22. if len(num_repeats.shape) != 1:
  23. raise ValueError('num_repeats must be 1D')
  24. num_rows = true_classes.shape[0]
  25. # unigrams = np.array(unigrams)
  26. if distortion != 1.:
  27. unigrams = unigrams.to(torch.float64) ** distortion
  28. # print('unigrams:', unigrams)
  29. indices = torch.arange(num_rows)
  30. indices = torch.repeat_interleave(indices, num_repeats)
  31. num_samples = len(indices)
  32. result = torch.zeros(num_samples, dtype=torch.long)
  33. while len(indices) > 0:
  34. # print('len(indices):', len(indices))
  35. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  36. candidates = torch.tensor(list(sampler))
  37. candidates = candidates.view(len(indices), 1)
  38. # print('candidates:', candidates)
  39. # print('true_classes:', true_classes[indices, :])
  40. result[indices] = candidates.transpose(0, 1)
  41. # print('result:', result)
  42. mask = (candidates == true_classes[indices, :])
  43. mask = mask.sum(1).to(torch.bool)
  44. # print('mask:', mask)
  45. indices = indices[mask]
  46. # result[indices] = 0
  47. return result
  48. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  49. Tuple[torch.Tensor, torch.Tensor]:
  50. if adj_mat.is_sparse:
  51. adj_mat = adj_mat.coalesce()
  52. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  53. device=adj_mat.device)
  54. degrees = degrees.index_add(0, adj_mat.indices()[1],
  55. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  56. device=adj_mat.device))
  57. edges_pos = adj_mat.indices().transpose(0, 1)
  58. else:
  59. degrees = adj_mat.sum(0)
  60. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  61. return edges_pos, degrees
  62. def get_true_classes(adj_mat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
  63. indices = adj_mat.indices()
  64. row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  65. #print('indices[0]:', indices[0], count[indices[0]])
  66. row_count = row_count.index_add(0, indices[0],
  67. torch.ones(indices.shape[1], dtype=torch.long))
  68. #print('count:', count)
  69. max_true_classes = torch.max(row_count).item()
  70. #print('max_true_classes:', max_true_classes)
  71. true_classes = torch.full((adj_mat.shape[0], max_true_classes),
  72. -1, dtype=torch.long)
  73. # inv = torch.unique(indices[0], return_inverse=True)
  74. # indices = indices.copy()
  75. # true_classes[indices[0], 0] = indices[1]
  76. t = time.time()
  77. cc = cumcount(indices[0].cpu().numpy())
  78. print('cumcount() took:', time.time() - t)
  79. cc = torch.tensor(cc)
  80. t = time.time()
  81. true_classes[indices[0], cc] = indices[1]
  82. print('assignment took:', time.time() - t)
  83. ''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  84. for i in range(indices.shape[1]):
  85. # print('looping...')
  86. row = indices[0, i]
  87. col = indices[1, i]
  88. #print('row:', row, 'col:', col, 'count[row]:', count[row])
  89. true_classes[row, count[row]] = col
  90. count[row] += 1 '''
  91. # t = time.time()
  92. # true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
  93. # print('repeat_interleave() took:', time.time() - t)
  94. return true_classes, row_count
  95. def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
  96. if not isinstance(adj_mat, torch.Tensor):
  97. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  98. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  99. true_classes, row_count = get_true_classes(adj_mat)
  100. # true_classes = edges_pos[:, 1].view(-1, 1)
  101. # print('true_classes:', true_classes)
  102. neg_neighbors = fixed_unigram_candidate_sampler(
  103. true_classes, row_count, degrees, 0.75).to(adj_mat.device)
  104. print('neg_neighbors:', neg_neighbors)
  105. edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
  106. neg_neighbors.view(-1, 1) ], 1)
  107. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  108. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  109. dtype=adj_mat.dtype, device=adj_mat.device)
  110. adj_mat_neg = adj_mat_neg.coalesce()
  111. indices = adj_mat_neg.indices()
  112. adj_mat_neg = torch.sparse_coo_tensor(indices,
  113. torch.ones(indices.shape[1]), adj_mat.shape,
  114. dtype=adj_mat.dtype, device=adj_mat.device)
  115. adj_mat_neg = adj_mat_neg.coalesce()
  116. return adj_mat_neg
  117. def negative_sample_data(data: Data) -> Data:
  118. new_edge_types = {}
  119. res = Data(target_value=0)
  120. for vt in data.vertex_types:
  121. res.add_vertex_type(vt.name, vt.count)
  122. for key, et in data.edge_types.items():
  123. adjacency_matrices_neg = []
  124. for adj_mat in et.adjacency_matrices:
  125. adj_mat_neg = negative_sample_adj_mat(adj_mat)
  126. adjacency_matrices_neg.append(adj_mat_neg)
  127. res.add_edge_type(et.name,
  128. et.vertex_type_row, et.vertex_type_column,
  129. adjacency_matrices_neg, et.decoder_factory)
  130. #new_et = EdgeType(et.name, et.vertex_type_row,
  131. # et.vertex_type_column, adjacency_matrices_neg,
  132. # et.decoder_factory, et.total_connectivity)
  133. #new_edge_types[key] = new_et
  134. #res = Data(data.vertex_types, new_edge_types)
  135. return res