IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

125 linhas
5.0KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. from icosagon.trainprep import TrainValTest, \
  6. train_val_test_split_edges, \
  7. get_edges_and_degrees, \
  8. prepare_adj_mat, \
  9. prepare_relation_type
  10. import torch
  11. import pytest
  12. import numpy as np
  13. from itertools import chain
  14. from icosagon.data import RelationType
  15. def test_train_val_test_split_edges_01():
  16. edges = torch.randint(0, 10, (10, 2))
  17. with pytest.raises(ValueError):
  18. _ = train_val_test_split_edges(edges, TrainValTest(.5, .5, .5))
  19. with pytest.raises(ValueError):
  20. _ = train_val_test_split_edges(edges, TrainValTest(.2, .2, .2))
  21. with pytest.raises(ValueError):
  22. _ = train_val_test_split_edges(edges, None)
  23. with pytest.raises(ValueError):
  24. _ = train_val_test_split_edges(edges, (.8, .1, .1))
  25. with pytest.raises(ValueError):
  26. _ = train_val_test_split_edges(np.random.randint(0, 10, (10, 2)), TrainValTest(.8, .1, .1))
  27. with pytest.raises(ValueError):
  28. _ = train_val_test_split_edges(torch.randint(0, 10, (10, 3)), TrainValTest(.8, .1, .1))
  29. with pytest.raises(ValueError):
  30. _ = train_val_test_split_edges(torch.randint(0, 10, (10, 2, 1)), TrainValTest(.8, .1, .1))
  31. with pytest.raises(ValueError):
  32. _ = train_val_test_split_edges(None, TrainValTest(.8, .2, .2))
  33. res = train_val_test_split_edges(edges, TrainValTest(.8, .1, .1))
  34. assert res.train.shape == (8, 2) and res.val.shape == (1, 2) and \
  35. res.test.shape == (1, 2)
  36. res = train_val_test_split_edges(edges, TrainValTest(.8, .0, .2))
  37. assert res.train.shape == (8, 2) and res.val.shape == (0, 2) and \
  38. res.test.shape == (2, 2)
  39. res = train_val_test_split_edges(edges, TrainValTest(.8, .2, .0))
  40. assert res.train.shape == (8, 2) and res.val.shape == (2, 2) and \
  41. res.test.shape == (0, 2)
  42. res = train_val_test_split_edges(edges, TrainValTest(.0, .5, .5))
  43. assert res.train.shape == (0, 2) and res.val.shape == (5, 2) and \
  44. res.test.shape == (5, 2)
  45. res = train_val_test_split_edges(edges, TrainValTest(.0, .0, 1.))
  46. assert res.train.shape == (0, 2) and res.val.shape == (0, 2) and \
  47. res.test.shape == (10, 2)
  48. res = train_val_test_split_edges(edges, TrainValTest(.0, 1., .0))
  49. assert res.train.shape == (0, 2) and res.val.shape == (10, 2) and \
  50. res.test.shape == (0, 2)
  51. def test_train_val_test_split_edges_02():
  52. edges = torch.randint(0, 30, (30, 2))
  53. ratios = TrainValTest(.8, .1, .1)
  54. res = train_val_test_split_edges(edges, ratios)
  55. edges = [ tuple(a) for a in edges ]
  56. res = [ tuple(a) for a in chain(res.train, res.val, res.test) ]
  57. assert all([ a in edges for a in res ])
  58. def test_get_edges_and_degrees_01():
  59. adj_mat_dense = (torch.rand((10, 10)) > .5)
  60. adj_mat_sparse = adj_mat_dense.to_sparse()
  61. edges_dense, degrees_dense = get_edges_and_degrees(adj_mat_dense)
  62. edges_sparse, degrees_sparse = get_edges_and_degrees(adj_mat_sparse)
  63. assert torch.all(degrees_dense == degrees_sparse)
  64. edges_dense = [ tuple(a) for a in edges_dense ]
  65. edges_sparse = [ tuple(a) for a in edges_dense ]
  66. assert len(edges_dense) == len(edges_sparse)
  67. assert all([ a in edges_dense for a in edges_sparse ])
  68. assert all([ a in edges_sparse for a in edges_dense ])
  69. # assert torch.all(edges_dense == edges_sparse)
  70. def test_prepare_adj_mat_01():
  71. adj_mat = (torch.rand((10, 10)) > .5)
  72. adj_mat = adj_mat.to_sparse()
  73. ratios = TrainValTest(.8, .1, .1)
  74. _ = prepare_adj_mat(adj_mat, ratios)
  75. def test_prepare_adj_mat_02():
  76. adj_mat = (torch.rand((10, 10)) > .5)
  77. adj_mat = adj_mat.to_sparse()
  78. ratios = TrainValTest(.8, .1, .1)
  79. (adj_mat_train, edges_pos, edges_neg) = prepare_adj_mat(adj_mat, ratios)
  80. assert isinstance(adj_mat_train, torch.Tensor)
  81. assert adj_mat_train.is_sparse
  82. assert adj_mat_train.shape == adj_mat.shape
  83. assert adj_mat_train.dtype == adj_mat.dtype
  84. assert isinstance(edges_pos, TrainValTest)
  85. assert isinstance(edges_neg, TrainValTest)
  86. for a in ['train', 'val', 'test']:
  87. for b in [edges_pos, edges_neg]:
  88. edges = getattr(b, a)
  89. assert isinstance(edges, torch.Tensor)
  90. assert len(edges.shape) == 2
  91. assert edges.shape[1] == 2
  92. def test_prepare_relation_type_01():
  93. adj_mat = (torch.rand((10, 10)) > .5)
  94. r = RelationType('Test', 0, 0, adj_mat, True)
  95. ratios = TrainValTest(.8, .1, .1)
  96. _ = prepare_relation_type(r, ratios, False)
  97. # def prepare_relation(r, ratios):
  98. # adj_mat = r.adjacency_matrix
  99. # adj_mat_train, edges_pos, edges_neg = prepare_adj_mat(adj_mat)
  100. #
  101. # if r.node_type_row == r.node_type_column:
  102. # adj_mat_train = norm_adj_mat_one_node_type(adj_mat_train)
  103. # else:
  104. # adj_mat_train = norm_adj_mat_two_node_types(adj_mat_train)
  105. #
  106. # return PreparedRelation(r.name, r.node_type_row, r.node_type_column,
  107. # adj_mat_train, edges_pos, edges_neg)