IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
Stanislaw Adaszewski 1a303f1a51 Add test_fast_graph_conv_01() and test_fast_graph_conv_02(). 4 år sedan
docker Start working on experiments/decagon_run. 4 år sedan
docs Update matrix-multiply. 4 år sedan
experiments Add Citing note. 4 år sedan
src Add test_fast_graph_conv_01() and test_fast_graph_conv_02(). 4 år sedan
tests Add test_fast_graph_conv_01() and test_fast_graph_conv_02(). 4 år sedan
.empty Initial commit. 4 år sedan
.gitignore Add test_timing_05(). 4 år sedan
README.md Add Citing note. 4 år sedan
requirements.txt Start icosagon. 4 år sedan

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

Citing

If you use this code in your research please cite this repository as:

Adaszewski S. (2020) https://code.adared.ch/sadaszewski/decagon-pytorch

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.