IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

167 lines
5.8KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. from .cumcount import cumcount
  14. import time
  15. def fixed_unigram_candidate_sampler(
  16. true_classes: Union[np.array, torch.Tensor],
  17. unigrams: List[Union[int, float]],
  18. distortion: float = 1.):
  19. if isinstance(true_classes, torch.Tensor):
  20. true_classes = true_classes.detach().cpu().numpy()
  21. if isinstance(unigrams, torch.Tensor):
  22. unigrams = unigrams.detach().cpu().numpy()
  23. if len(true_classes.shape) != 2:
  24. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  25. num_samples = true_classes.shape[0]
  26. unigrams = np.array(unigrams)
  27. if distortion != 1.:
  28. unigrams = unigrams.astype(np.float64) ** distortion
  29. # print('unigrams:', unigrams)
  30. indices = np.arange(num_samples)
  31. result = np.zeros(num_samples, dtype=np.int64)
  32. while len(indices) > 0:
  33. # print('len(indices):', len(indices))
  34. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  35. candidates = np.array(list(sampler))
  36. candidates = np.reshape(candidates, (len(indices), 1))
  37. # print('candidates:', candidates)
  38. # print('true_classes:', true_classes[indices, :])
  39. result[indices] = candidates.T
  40. # print('result:', result)
  41. mask = (candidates == true_classes[indices, :])
  42. mask = mask.sum(1).astype(np.bool)
  43. # print('mask:', mask)
  44. indices = indices[mask]
  45. # result[indices] = 0
  46. return torch.tensor(result)
  47. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  48. Tuple[torch.Tensor, torch.Tensor]:
  49. if adj_mat.is_sparse:
  50. adj_mat = adj_mat.coalesce()
  51. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  52. device=adj_mat.device)
  53. degrees = degrees.index_add(0, adj_mat.indices()[1],
  54. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  55. device=adj_mat.device))
  56. edges_pos = adj_mat.indices().transpose(0, 1)
  57. else:
  58. degrees = adj_mat.sum(0)
  59. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  60. return edges_pos, degrees
  61. def get_true_classes(adj_mat: torch.Tensor) -> torch.Tensor:
  62. indices = adj_mat.indices()
  63. row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  64. #print('indices[0]:', indices[0], count[indices[0]])
  65. row_count = row_count.index_add(0, indices[0],
  66. torch.ones(indices.shape[1], dtype=torch.long))
  67. #print('count:', count)
  68. max_true_classes = torch.max(row_count).item()
  69. #print('max_true_classes:', max_true_classes)
  70. true_classes = torch.full((adj_mat.shape[0], max_true_classes),
  71. -1, dtype=torch.long)
  72. # inv = torch.unique(indices[0], return_inverse=True)
  73. # indices = indices.copy()
  74. # true_classes[indices[0], 0] = indices[1]
  75. t = time.time()
  76. cc = cumcount(indices[0].cpu().numpy())
  77. print('cumcount() took:', time.time() - t)
  78. cc = torch.tensor(cc)
  79. t = time.time()
  80. true_classes[indices[0], cc] = indices[1]
  81. print('assignment took:', time.time() - t)
  82. ''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  83. for i in range(indices.shape[1]):
  84. # print('looping...')
  85. row = indices[0, i]
  86. col = indices[1, i]
  87. #print('row:', row, 'col:', col, 'count[row]:', count[row])
  88. true_classes[row, count[row]] = col
  89. count[row] += 1 '''
  90. t = time.time()
  91. true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
  92. print('repeat_interleave() took:', time.time() - t)
  93. return true_classes
  94. def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
  95. if not isinstance(adj_mat, torch.Tensor):
  96. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  97. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  98. true_classes = get_true_classes(adj_mat)
  99. # true_classes = edges_pos[:, 1].view(-1, 1)
  100. # print('true_classes:', true_classes)
  101. neg_neighbors = fixed_unigram_candidate_sampler(
  102. true_classes, degrees, 0.75).to(adj_mat.device)
  103. print('neg_neighbors:', neg_neighbors)
  104. edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
  105. neg_neighbors.view(-1, 1) ], 1)
  106. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  107. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  108. dtype=adj_mat.dtype, device=adj_mat.device)
  109. adj_mat_neg = adj_mat_neg.coalesce()
  110. indices = adj_mat_neg.indices()
  111. adj_mat_neg = torch.sparse_coo_tensor(indices,
  112. torch.ones(indices.shape[1]), adj_mat.shape,
  113. dtype=adj_mat.dtype, device=adj_mat.device)
  114. adj_mat_neg = adj_mat_neg.coalesce()
  115. return adj_mat_neg
  116. def negative_sample_data(data: Data) -> Data:
  117. new_edge_types = {}
  118. res = Data()
  119. for vt in data.vertex_types:
  120. res.add_vertex_type(vt.name, vt.count)
  121. for key, et in data.edge_types.items():
  122. adjacency_matrices_neg = []
  123. for adj_mat in et.adjacency_matrices:
  124. adj_mat_neg = negative_sample_adj_mat(adj_mat)
  125. adjacency_matrices_neg.append(adj_mat_neg)
  126. res.add_edge_type(et.name,
  127. et.vertex_type_row, et.vertex_type_column,
  128. adjacency_matrices_neg, et.decoder_factory)
  129. #new_et = EdgeType(et.name, et.vertex_type_row,
  130. # et.vertex_type_column, adjacency_matrices_neg,
  131. # et.decoder_factory, et.total_connectivity)
  132. #new_edge_types[key] = new_et
  133. #res = Data(data.vertex_types, new_edge_types)
  134. return res