|
- from icosagon.input import InputLayer, \
- OneHotInputLayer
- from icosagon.convlayer import DecagonLayer, \
- Convolutions
- from icosagon.data import Data
- import torch
- import pytest
- from icosagon.convolve import DropoutGraphConvActivation
- from decagon_pytorch.convolve import MultiDGCA
- import decagon_pytorch.convolve
-
-
- def _some_data_with_interactions():
- d = Data()
- d.add_node_type('Gene', 1000)
- d.add_node_type('Drug', 100)
- d.add_relation_type('Target', 1, 0,
- torch.rand((100, 1000), dtype=torch.float32).round())
- d.add_relation_type('Interaction', 0, 0,
- torch.rand((1000, 1000), dtype=torch.float32).round())
- d.add_relation_type('Side Effect: Nausea', 1, 1,
- torch.rand((100, 100), dtype=torch.float32).round())
- d.add_relation_type('Side Effect: Infertility', 1, 1,
- torch.rand((100, 100), dtype=torch.float32).round())
- d.add_relation_type('Side Effect: Death', 1, 1,
- torch.rand((100, 100), dtype=torch.float32).round())
- return d
-
-
- def test_decagon_layer_01():
- d = _some_data_with_interactions()
- in_layer = InputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
- seq = torch.nn.Sequential(in_layer, d_layer)
- _ = seq(None) # dummy call
-
-
- def test_decagon_layer_02():
- d = _some_data_with_interactions()
- in_layer = OneHotInputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
- seq = torch.nn.Sequential(in_layer, d_layer)
- _ = seq(None) # dummy call
-
-
- def test_decagon_layer_03():
- d = _some_data_with_interactions()
- in_layer = OneHotInputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
-
- assert d_layer.input_dim == [ 1000, 100 ]
- assert d_layer.output_dim == [ 32, 32 ]
- assert d_layer.data == d
- assert d_layer.keep_prob == 1.
- assert d_layer.rel_activation(0.5) == 0.5
- x = torch.tensor([-1, 0, 0.5, 1])
- assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
-
- assert not d_layer.is_sparse
- assert len(d_layer.next_layer_repr) == 2
-
- for i in range(2):
- assert len(d_layer.next_layer_repr[i]) == 2
- assert isinstance(d_layer.next_layer_repr[i], list)
- assert isinstance(d_layer.next_layer_repr[i][0], Convolutions)
- assert isinstance(d_layer.next_layer_repr[i][0].node_type_column, int)
- assert isinstance(d_layer.next_layer_repr[i][0].convolutions, list)
- assert all([
- isinstance(dgca, DropoutGraphConvActivation) \
- for dgca in d_layer.next_layer_repr[i][0].convolutions
- ])
- assert all([
- dgca.output_dim == 32 \
- for dgca in d_layer.next_layer_repr[i][0].convolutions
- ])
-
-
- def test_decagon_layer_04():
- # check if it is equivalent to MultiDGCA, as it should be
-
- d = Data()
- d.add_node_type('Dummy', 100)
- d.add_relation_type('Dummy Relation', 0, 0,
- torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(d)
-
- multi_dgca = MultiDGCA([10], 32,
- [r.adjacency_matrix for r in d.relation_types[0, 0]],
- keep_prob=1., activation=lambda x: x)
-
- d_layer = DecagonLayer(in_layer.output_dim, 32, d,
- keep_prob=1., rel_activation=lambda x: x,
- layer_activation=lambda x: x)
-
- assert isinstance(d_layer.next_layer_repr[0][0].convolutions[0],
- DropoutGraphConvActivation)
-
- weight = d_layer.next_layer_repr[0][0].convolutions[0].graph_conv.weight
- assert isinstance(weight, torch.Tensor)
-
- assert len(multi_dgca.dgca) == 1
- assert isinstance(multi_dgca.dgca[0],
- decagon_pytorch.convolve.DropoutGraphConvActivation)
-
- multi_dgca.dgca[0].graph_conv.weight = weight
-
- seq = torch.nn.Sequential(in_layer, d_layer)
- out_d_layer = seq(None)
- out_multi_dgca = multi_dgca(in_layer(None))
-
- assert isinstance(out_d_layer, list)
- assert len(out_d_layer) == 1
-
- assert torch.all(out_d_layer[0] == out_multi_dgca)
-
-
- def test_decagon_layer_05():
- # check if it is equivalent to MultiDGCA, as it should be
- # this time for two relations, same edge type
-
- d = Data()
- d.add_node_type('Dummy', 100)
- d.add_relation_type('Dummy Relation 1', 0, 0,
- torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
- d.add_relation_type('Dummy Relation 2', 0, 0,
- torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
-
- in_layer = OneHotInputLayer(d)
-
- multi_dgca = MultiDGCA([100, 100], 32,
- [r.adjacency_matrix for r in d.relation_types[0, 0]],
- keep_prob=1., activation=lambda x: x)
-
- d_layer = DecagonLayer(in_layer.output_dim, output_dim=32, data=d,
- keep_prob=1., rel_activation=lambda x: x,
- layer_activation=lambda x: x)
-
- assert all([
- isinstance(dgca, DropoutGraphConvActivation) \
- for dgca in d_layer.next_layer_repr[0][0].convolutions
- ])
-
- weight = [ dgca.graph_conv.weight \
- for dgca in d_layer.next_layer_repr[0][0].convolutions ]
- assert all([
- isinstance(w, torch.Tensor) \
- for w in weight
- ])
-
- assert len(multi_dgca.dgca) == 2
- for i in range(2):
- assert isinstance(multi_dgca.dgca[i],
- decagon_pytorch.convolve.DropoutGraphConvActivation)
-
- for i in range(2):
- multi_dgca.dgca[i].graph_conv.weight = weight[i]
-
- seq = torch.nn.Sequential(in_layer, d_layer)
- out_d_layer = seq(None)
- x = in_layer(None)
- out_multi_dgca = multi_dgca([ x[0], x[0] ])
-
- assert isinstance(out_d_layer, list)
- assert len(out_d_layer) == 1
-
- assert torch.all(out_d_layer[0] == out_multi_dgca)
|