IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
6.6KB

  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import numpy as np
  6. import torch
  7. import torch.utils.data
  8. from typing import List, \
  9. Union, \
  10. Tuple
  11. from .data import Data, \
  12. EdgeType
  13. from .cumcount import cumcount
  14. import time
  15. def fixed_unigram_candidate_sampler(
  16. true_classes: torch.Tensor,
  17. num_repeats: torch.Tensor,
  18. unigrams: torch.Tensor,
  19. distortion: float = 1.) -> torch.Tensor:
  20. if len(true_classes.shape) != 2:
  21. raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
  22. if len(num_repeats.shape) != 1:
  23. raise ValueError('num_repeats must be 1D')
  24. num_rows = true_classes.shape[0]
  25. print('true_classes.shape:', true_classes.shape)
  26. # unigrams = np.array(unigrams)
  27. if distortion != 1.:
  28. unigrams = unigrams.to(torch.float64) ** distortion
  29. print('unigrams:', unigrams)
  30. indices = torch.arange(num_rows)
  31. indices = torch.repeat_interleave(indices, num_repeats)
  32. indices = torch.cat([ torch.arange(len(indices)).view(-1, 1),
  33. indices.view(-1, 1) ], dim=1)
  34. num_samples = len(indices)
  35. result = torch.zeros(num_samples, dtype=torch.long)
  36. print('num_rows:', num_rows, 'num_samples:', num_samples)
  37. while len(indices) > 0:
  38. print('len(indices):', len(indices))
  39. print('indices:', indices)
  40. sampler = torch.utils.data.WeightedRandomSampler(unigrams, len(indices))
  41. candidates = torch.tensor(list(sampler))
  42. candidates = candidates.view(len(indices), 1)
  43. print('candidates:', candidates)
  44. print('true_classes:', true_classes[indices[:, 1], :])
  45. result[indices[:, 0]] = candidates.transpose(0, 1)
  46. print('result:', result)
  47. mask = (candidates == true_classes[indices[:, 1], :])
  48. mask = mask.sum(1).to(torch.bool)
  49. print('mask:', mask)
  50. indices = indices[mask]
  51. # result[indices] = 0
  52. return result
  53. def get_edges_and_degrees(adj_mat: torch.Tensor) -> \
  54. Tuple[torch.Tensor, torch.Tensor]:
  55. if adj_mat.is_sparse:
  56. adj_mat = adj_mat.coalesce()
  57. degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
  58. device=adj_mat.device)
  59. degrees = degrees.index_add(0, adj_mat.indices()[1],
  60. torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
  61. device=adj_mat.device))
  62. edges_pos = adj_mat.indices().transpose(0, 1)
  63. else:
  64. degrees = adj_mat.sum(0)
  65. edges_pos = torch.nonzero(adj_mat, as_tuple=False)
  66. return edges_pos, degrees
  67. def get_true_classes(adj_mat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
  68. indices = adj_mat.indices()
  69. row_count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  70. #print('indices[0]:', indices[0], count[indices[0]])
  71. row_count = row_count.index_add(0, indices[0],
  72. torch.ones(indices.shape[1], dtype=torch.long))
  73. #print('count:', count)
  74. max_true_classes = torch.max(row_count).item()
  75. #print('max_true_classes:', max_true_classes)
  76. true_classes = torch.full((adj_mat.shape[0], max_true_classes),
  77. -1, dtype=torch.long)
  78. # inv = torch.unique(indices[0], return_inverse=True)
  79. # indices = indices.copy()
  80. # true_classes[indices[0], 0] = indices[1]
  81. t = time.time()
  82. cc = cumcount(indices[0].cpu().numpy())
  83. print('cumcount() took:', time.time() - t)
  84. cc = torch.tensor(cc)
  85. t = time.time()
  86. true_classes[indices[0], cc] = indices[1]
  87. print('assignment took:', time.time() - t)
  88. ''' count = torch.zeros(adj_mat.shape[0], dtype=torch.long)
  89. for i in range(indices.shape[1]):
  90. # print('looping...')
  91. row = indices[0, i]
  92. col = indices[1, i]
  93. #print('row:', row, 'col:', col, 'count[row]:', count[row])
  94. true_classes[row, count[row]] = col
  95. count[row] += 1 '''
  96. # t = time.time()
  97. # true_classes = torch.repeat_interleave(true_classes, row_count, dim=0)
  98. # print('repeat_interleave() took:', time.time() - t)
  99. return true_classes, row_count
  100. def negative_sample_adj_mat(adj_mat: torch.Tensor) -> torch.Tensor:
  101. if not isinstance(adj_mat, torch.Tensor):
  102. raise ValueError('adj_mat must be a torch.Tensor, got: %s' % adj_mat.__class__.__name__)
  103. edges_pos, degrees = get_edges_and_degrees(adj_mat)
  104. true_classes, row_count = get_true_classes(adj_mat)
  105. # true_classes = edges_pos[:, 1].view(-1, 1)
  106. # print('true_classes:', true_classes)
  107. neg_neighbors = fixed_unigram_candidate_sampler(
  108. true_classes, row_count, degrees, 0.75).to(adj_mat.device)
  109. print('neg_neighbors:', neg_neighbors)
  110. edges_neg = torch.cat([ edges_pos[:, 0].view(-1, 1),
  111. neg_neighbors.view(-1, 1) ], 1)
  112. adj_mat_neg = torch.sparse_coo_tensor(indices = edges_neg.transpose(0, 1),
  113. values=torch.ones(len(edges_neg)), size=adj_mat.shape,
  114. dtype=adj_mat.dtype, device=adj_mat.device)
  115. adj_mat_neg = adj_mat_neg.coalesce()
  116. indices = adj_mat_neg.indices()
  117. adj_mat_neg = torch.sparse_coo_tensor(indices,
  118. torch.ones(indices.shape[1]), adj_mat.shape,
  119. dtype=adj_mat.dtype, device=adj_mat.device)
  120. adj_mat_neg = adj_mat_neg.coalesce()
  121. return adj_mat_neg
  122. def negative_sample_data(data: Data) -> Data:
  123. new_edge_types = {}
  124. res = Data(target_value=0)
  125. for vt in data.vertex_types:
  126. res.add_vertex_type(vt.name, vt.count)
  127. for key, et in data.edge_types.items():
  128. adjacency_matrices_neg = []
  129. for adj_mat in et.adjacency_matrices:
  130. adj_mat_neg = negative_sample_adj_mat(adj_mat)
  131. adjacency_matrices_neg.append(adj_mat_neg)
  132. res.add_edge_type(et.name,
  133. et.vertex_type_row, et.vertex_type_column,
  134. adjacency_matrices_neg, et.decoder_factory)
  135. #new_et = EdgeType(et.name, et.vertex_type_row,
  136. # et.vertex_type_column, adjacency_matrices_neg,
  137. # et.decoder_factory, et.total_connectivity)
  138. #new_edge_types[key] = new_et
  139. #res = Data(data.vertex_types, new_edge_types)
  140. return res
  141. def merge_data(pos_data: Data, neg_data: Data) -> Data:
  142. assert isinstance(pos_data, Data)
  143. assert isinstance(neg_data, Data)
  144. res = PosNegData()
  145. for vt in pos_data.vertex_types:
  146. res.add_vertex_type(vt.name, vt.count)
  147. for key, pos_et in pos_data.edge_types.items():
  148. neg_et = neg_data.edge_types[key]
  149. res.add_edge_type(pos_et.name,
  150. pos_et.vertex_type_row, pos_et.vertex_type_column,
  151. pos_et.adjacency_matrices, neg_et.adjacency_matrices,
  152. pos_et.decoder_factory)