IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

136 lignes
5.0KB

  1. #
  2. # This module implements a single layer of the Decagon
  3. # model. This is going to be already quite complex, as
  4. # we will be using all the graph convolutional building
  5. # blocks.
  6. #
  7. # h_{i}^(k+1) = ϕ(∑_r ∑_{j∈N{r}^{i}} c_{r}^{ij} * \
  8. # W_{r}^(k) h_{j}^{k} + c_{r}^{i} h_{i}^(k))
  9. #
  10. # N{r}^{i} - set of neighbors of node i under relation r
  11. # W_{r}^(k) - relation-type specific weight matrix
  12. # h_{i}^(k) - hidden state of node i in layer k
  13. # h_{i}^(k)∈R^{d(k)} where d(k) is the dimensionality
  14. # of the representation in k-th layer
  15. # ϕ - activation function
  16. # c_{r}^{ij} - normalization constants
  17. # c_{r}^{ij} = 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|)
  18. # c_{r}^{i} - normalization constants
  19. # c_{r}^{i} = 1/|N_{r}^{i}|
  20. #
  21. import torch
  22. from .convolve import SparseDropoutGraphConvActivation
  23. from .data import Data
  24. from typing import List, \
  25. Union, \
  26. Callable
  27. from collections import defaultdict
  28. class Layer(torch.nn.Module):
  29. def __init__(self, output_dim: Union[int, List[int]], **kwargs) -> None:
  30. super().__init__(**kwargs)
  31. self.output_dim = output_dim
  32. class InputLayer(Layer):
  33. def __init__(self, data: Data, output_dim: Union[int, List[int]]= None, **kwargs) -> None:
  34. output_dim = output_dim or \
  35. list(map(lambda a: a.count, data.node_types))
  36. if not isinstance(output_dim, list):
  37. output_dim = [output_dim,] * len(data.node_types)
  38. super().__init__(output_dim, **kwargs)
  39. self.data = data
  40. self.node_reps = None
  41. self.build()
  42. def build(self) -> None:
  43. self.node_reps = []
  44. for i, nt in enumerate(self.data.node_types):
  45. reps = torch.rand(nt.count, self.output_dim[i])
  46. reps = torch.nn.Parameter(reps)
  47. self.register_parameter('node_reps[%d]' % i, reps)
  48. self.node_reps.append(reps)
  49. def forward(self) -> List[torch.nn.Parameter]:
  50. return self.node_reps
  51. def __repr__(self) -> str:
  52. s = ''
  53. s += 'GNN input layer with output_dim: %s\n' % self.output_dim
  54. s += ' # of node types: %d\n' % len(self.data.node_types)
  55. for nt in self.data.node_types:
  56. s += ' - %s (%d)\n' % (nt.name, nt.count)
  57. return s.strip()
  58. class DecagonLayer(Layer):
  59. def __init__(self,
  60. data: Data,
  61. previous_layer: Layer,
  62. output_dim: Union[int, List[int]],
  63. keep_prob: float = 1.,
  64. rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x,
  65. layer_activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu,
  66. **kwargs):
  67. if not isinstance(output_dim, list):
  68. output_dim = [ output_dim ] * len(data.node_types)
  69. super().__init__(output_dim, **kwargs)
  70. self.data = data
  71. self.previous_layer = previous_layer
  72. self.input_dim = previous_layer.output_dim
  73. self.keep_prob = keep_prob
  74. self.rel_activation = rel_activation
  75. self.layer_activation = layer_activation
  76. self.convolutions = None
  77. self.build()
  78. def build(self):
  79. self.convolutions = {}
  80. for (node_type_row, node_type_column) in self.data.relation_types.keys():
  81. adjacency_matrices = \
  82. self.data.get_adjacency_matrices(node_type_row, node_type_column)
  83. self.convolutions[node_type_row, node_type_column] = SparseMultiDGCA(self.input_dim,
  84. self.output_dim, adjacency_matrices,
  85. self.keep_prob, self.rel_activation)
  86. # for node_type_row, node_type_col in enumerate(self.data.node_
  87. # if rt.node_type_row == i or rt.node_type_col == i:
  88. def __call__(self):
  89. prev_layer_repr = self.previous_layer()
  90. next_layer_repr = defaultdict(list)
  91. for (nt_row, nt_col), rel in self.data.relation_types.items():
  92. conv = SparseDropoutGraphConvActivation(self.input_dim[nt_col],
  93. self.output_dim[nt_row], rel.adjacency_matrix,
  94. self.keep_prob, self.rel_activation)
  95. next_layer_repr[nt_row].append(conv)
  96. conv = SparseDropoutGraphConvActivation(self.input_dim[nt_row],
  97. self.output_dim[nt_col], rel.adjacency_matrix.transpose(0, 1),
  98. self.keep_prob, self.rel_activation)
  99. next_layer_repr[nt_col].append(conv)
  100. next_layer_repr = list(map(sum, next_layer_repr))
  101. return next_layer_repr
  102. #for i, nt in enumerate(self.data.node_types):
  103. # new_repr = []
  104. # for nt_row, nt_col in self.data.relation_types.keys():
  105. # if nt_row != i and nt_col != i:
  106. # continue
  107. # if nt_row == i:
  108. # x = prev_layer_repr[nt_col]
  109. # else:
  110. # x = prev_layer_repr[nt_row]
  111. # conv = self.convolutions[key]
  112. # new_repr.append(conv(x))
  113. # new_repr = sum(new_repr)
  114. # new_layer_repr.append(new_repr)
  115. # return new_layer_repr