IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Stanislaw Adaszewski dc8c51a8e6 Ammend test_decode_layer_05. 4 vuotta sitten
docs Add icosagon-reltype-rules. 4 vuotta sitten
src Use torch.nn.Parameter(List) in decode. 4 vuotta sitten
tests Ammend test_decode_layer_05. 4 vuotta sitten
.empty Initial commit. 4 vuotta sitten
.gitignore Add icosagon classes diagram. 4 vuotta sitten
README.md Update README.md 4 vuotta sitten
requirements.txt Start icosagon. 4 vuotta sitten

README.md

decagon-pytorch

Introduction

Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings.

Decagon-PyTorch is a PyTorch reimplementation of the algorithm.

References

  1. Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks Bioinformatics, 34(13), i457-i466.