IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

test_loss.py 1.8KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. from icosagon.loss import CrossEntropyLoss
  2. from icosagon.declayer import Predictions, \
  3. RelationFamilyPredictions, \
  4. RelationPredictions
  5. from icosagon.data import Data
  6. from icosagon.trainprep import prepare_training, \
  7. TrainValTest
  8. import torch
  9. def test_cross_entropy_loss_01():
  10. d = Data()
  11. d.add_node_type('Dummy', 5)
  12. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  13. fam.add_relation_type('Dummy Rel', torch.tensor([
  14. [0, 1, 0, 0, 0],
  15. [1, 0, 0, 0, 0],
  16. [0, 0, 0, 1, 0],
  17. [0, 0, 0, 0, 1],
  18. [0, 1, 0, 0, 0]
  19. ], dtype=torch.float32))
  20. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  21. assert len(prep_d.relation_families) == 1
  22. assert len(prep_d.relation_families[0].relation_types) == 1
  23. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.train) == 5
  24. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.val) == 0
  25. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.test) == 0
  26. rel_pred = RelationPredictions(
  27. TrainValTest(torch.tensor([1, 0, 1, 0, 1], dtype=torch.float32), torch.zeros(0), torch.zeros(0)),
  28. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0)),
  29. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0)),
  30. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0))
  31. )
  32. fam_pred = RelationFamilyPredictions([ rel_pred ])
  33. pred = Predictions([ fam_pred ])
  34. loss = CrossEntropyLoss(prep_d)
  35. print('loss: %.7f' % loss(pred))
  36. assert torch.abs(loss(pred) - 55.262043) < 0.000001
  37. loss = CrossEntropyLoss(prep_d, reduction='mean')
  38. print('loss: %.7f' % loss(pred))
  39. assert torch.abs(loss(pred) - 11.0524082) < 0.000001