IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

databatch.py 4.7KB

5 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. from icosagon.trainprep import PreparedData, \
  2. PreparedRelationFamily, \
  3. PreparedRelationType, \
  4. _empty_edge_list_tvt
  5. import torch
  6. import random
  7. class BatchedData(PreparedData):
  8. def __init__(self, *args, **kwargs):
  9. super().__init__(*args, **kwargs)
  10. def batched_data_skeleton(data: PreparedData) -> BatchedData:
  11. if not isinstance(data, PreparedData):
  12. raise TypeError('data must be an instance of PreparedData')
  13. fam_skels = []
  14. for fam in data.relation_families:
  15. rel_types_skel = []
  16. for rel in fam.relation_types:
  17. rel_skel = PreparedRelationType(rel.name,
  18. rel.node_type_row, rel.node_type_column,
  19. rel.adjacency_matrix, rel.adjacency_matrix_backward,
  20. _empty_edge_list_tvt(), _empty_edge_list_tvt(),
  21. _empty_edge_list_tvt(), _empty_edge_list_tvt())
  22. rel_types_skel.append(rel_skel)
  23. fam_skels.append(PreparedRelationFamily(fam.data, fam.name,
  24. fam.node_type_row, fam.node_type_column,
  25. fam.is_symmetric, fam.decoder_class,
  26. rel_types_skel))
  27. return BatchedData(data.node_types, fam_skels)
  28. class DataBatcher(object):
  29. def __init__(self, data: PreparedData, batch_size: int,
  30. shuffle: bool = True) -> None:
  31. self._check_params(data, batch_size)
  32. self.data = data
  33. self.batch_size = batch_size
  34. self.shuffle = shuffle
  35. # def batched_data_iter(self, fam_idx: int, rel_idx: int,
  36. # part_type: str) -> BatchedData:
  37. #
  38. # rel = self.data.relation_families[fam_idx].relation_types[rel_idx]
  39. #
  40. # edges = getattr(rel.edges_pos, part_type)
  41. # for m in range(0, len(edges), self.batch_size):
  42. # batched_data = batched_data_skeleton(self.data)
  43. # setattr(batched_data.relation_families[fam_idx].relation_types[rel_idx].edges_pos,
  44. # part_type, edges[m : m + self.batch_size])
  45. # yield batched_data
  46. #
  47. # edges = getattr(rel.edges_neg, part_type)
  48. # for m in range(0, len(edges), self.batch_size):
  49. # batched_data = batched_data_skeleton(self.data)
  50. # setattr(batched_data.relation_families[fam_idx].relation_types[rel_idx].edges_neg,
  51. # part_type, edges[m : m + self.batch_size])
  52. # yield batched_data
  53. #
  54. # edges = getattr(rel.edges_pos_back, part_type)
  55. # for m in range(0, len(edges), self.batch_size):
  56. # batched_data = batched_data_skeleton(self.data)
  57. # setattr(batched_data.relation_families[i].relation_types[k].edges_pos_back,
  58. # part_type, edges[m : m + self.batch_size])
  59. # yield batched_data
  60. #
  61. # edges = getattr(rel.edges_neg_back, part_type)
  62. # for m in range(0, len(), self.batch_size):
  63. # batched_data = batched_data_skeleton(self.data)
  64. # setattr(batched_data.relation_families[i].relation_types[k].edges_neg_back,
  65. # edges[m : m + self.batch_size])
  66. # yield batched_data
  67. def __iter__(self) -> BatchedData:
  68. gen = self.shuffle_iter() \
  69. if self.shuffle \
  70. else self.iter_base()
  71. for batched_data in gen:
  72. yield batched_data
  73. def iter_base(self) -> BatchedData:
  74. for i, fam in enumerate(self.data.relation_families):
  75. for k, rel in enumerate(fam.relation_types):
  76. for edge_type in ['edges_pos', 'edges_neg', 'edges_back_pos', 'edges_back_neg']:
  77. for part_type in ['train', 'val', 'test']:
  78. edges = getattr(getattr(rel, edge_type), part_type)
  79. if self.shuffle:
  80. perm = torch.randperm(len(edges))
  81. edges = edges[perm]
  82. for m in range(0, len(edges), self.batch_size):
  83. batched_data = batched_data_skeleton(self.data)
  84. setattr(getattr(batched_data.relation_families[i].relation_types[k],
  85. edge_type), part_type, edges[m : m + self.batch_size])
  86. yield batched_data
  87. def shuffle_iter(self) -> BatchedData:
  88. res = list(self.iter_base())
  89. random.shuffle(res)
  90. for batched_data in res:
  91. yield batched_data
  92. @staticmethod
  93. def _check_params(data, batch_size):
  94. if not isinstance(data, PreparedData):
  95. raise TypeError('data must be an instance of PreparedData')
  96. if not isinstance(batch_size, int):
  97. raise TypeError('batch_size must be an int')