IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

test_dropout.py 738B

1234567891011121314151617181920212223242526
  1. from icosagon.dropout import dropout_sparse, \
  2. dropout_dense
  3. import torch
  4. import numpy as np
  5. def test_dropout_01():
  6. for i in range(11):
  7. torch.random.manual_seed(i)
  8. a = torch.rand((5, 10))
  9. a[a < .5] = 0
  10. keep_prob=i/10. + np.finfo(np.float32).eps
  11. torch.random.manual_seed(i)
  12. b = dropout_dense(a, keep_prob=keep_prob)
  13. torch.random.manual_seed(i)
  14. c = dropout_sparse(a.to_sparse(), keep_prob=keep_prob)
  15. print('keep_prob:', keep_prob)
  16. print('a:', a.detach().cpu().numpy())
  17. print('b:', b.detach().cpu().numpy())
  18. print('c:', c, c.to_dense().detach().cpu().numpy())
  19. assert torch.all(b == c.to_dense())