|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- from icosagon.convolve import GraphConv, \
- DropoutGraphConvActivation
- import torch
- from icosagon.dropout import dropout
-
-
- def _test_graph_conv_01(use_sparse: bool):
- adj_mat = torch.rand((10, 20))
- adj_mat[adj_mat < .5] = 0
- adj_mat = torch.ceil(adj_mat)
-
- node_reprs = torch.eye(20)
-
- graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- graph_conv.weight = torch.nn.Parameter(torch.eye(20))
-
- res = graph_conv(node_reprs)
- assert torch.all(res == adj_mat)
-
-
- def _test_graph_conv_02(use_sparse: bool):
- adj_mat = torch.rand((10, 20))
- adj_mat[adj_mat < .5] = 0
- adj_mat = torch.ceil(adj_mat)
-
- node_reprs = torch.eye(20)
-
- graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- graph_conv.weight = torch.nn.Parameter(torch.eye(20) * 2)
-
- res = graph_conv(node_reprs)
- assert torch.all(res == adj_mat * 2)
-
-
- def _test_graph_conv_03(use_sparse: bool):
- adj_mat = torch.tensor([
- [1, 0, 1, 0, 1, 0], # [1, 0, 0]
- [1, 0, 1, 0, 0, 1], # [1, 0, 0]
- [1, 1, 0, 1, 0, 0], # [0, 1, 0]
- [0, 0, 0, 1, 0, 1], # [0, 1, 0]
- [1, 1, 1, 1, 1, 1], # [0, 0, 1]
- [0, 0, 0, 1, 1, 1] # [0, 0, 1]
- ], dtype=torch.float32)
-
- expect = torch.tensor([
- [1, 1, 1],
- [1, 1, 1],
- [2, 1, 0],
- [0, 1, 1],
- [2, 2, 2],
- [0, 1, 2]
- ], dtype=torch.float32)
-
- node_reprs = torch.eye(6)
-
- graph_conv = GraphConv(6, 3, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- graph_conv.weight = torch.nn.Parameter(torch.tensor([
- [1, 0, 0],
- [1, 0, 0],
- [0, 1, 0],
- [0, 1, 0],
- [0, 0, 1],
- [0, 0, 1]
- ], dtype=torch.float32))
-
- res = graph_conv(node_reprs)
- assert torch.all(res == expect)
-
-
- def test_graph_conv_dense_01():
- _test_graph_conv_01(use_sparse=False)
-
-
- def test_graph_conv_dense_02():
- _test_graph_conv_02(use_sparse=False)
-
-
- def test_graph_conv_dense_03():
- _test_graph_conv_03(use_sparse=False)
-
-
- def test_graph_conv_sparse_01():
- _test_graph_conv_01(use_sparse=True)
-
-
- def test_graph_conv_sparse_02():
- _test_graph_conv_02(use_sparse=True)
-
-
- def test_graph_conv_sparse_03():
- _test_graph_conv_03(use_sparse=True)
-
-
- def _test_dropout_graph_conv_activation_01(use_sparse: bool):
- adj_mat = torch.rand((10, 20))
- adj_mat[adj_mat < .5] = 0
- adj_mat = torch.ceil(adj_mat)
- node_reprs = torch.eye(20)
-
- conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat, keep_prob=1.,
- activation=lambda x: x)
-
- conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- conv_2.weight = conv_1.graph_conv.weight
-
- res_1 = conv_1(node_reprs)
- res_2 = conv_2(node_reprs)
-
- print('res_1:', res_1.detach().cpu().numpy())
- print('res_2:', res_2.detach().cpu().numpy())
-
- assert torch.all(res_1 == res_2)
-
-
- def _test_dropout_graph_conv_activation_02(use_sparse: bool):
- adj_mat = torch.rand((10, 20))
- adj_mat[adj_mat < .5] = 0
- adj_mat = torch.ceil(adj_mat)
- node_reprs = torch.eye(20)
-
- conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat, keep_prob=1.,
- activation=lambda x: x * 2)
-
- conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- conv_2.weight = conv_1.graph_conv.weight
-
- res_1 = conv_1(node_reprs)
- res_2 = conv_2(node_reprs)
-
- print('res_1:', res_1.detach().cpu().numpy())
- print('res_2:', res_2.detach().cpu().numpy())
-
- assert torch.all(res_1 == res_2 * 2)
-
-
- def _test_dropout_graph_conv_activation_03(use_sparse: bool):
- adj_mat = torch.rand((10, 20))
- adj_mat[adj_mat < .5] = 0
- adj_mat = torch.ceil(adj_mat)
- node_reprs = torch.eye(20)
-
- conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat, keep_prob=.5,
- activation=lambda x: x)
-
- conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
- if use_sparse else adj_mat)
- conv_2.weight = conv_1.graph_conv.weight
-
- torch.random.manual_seed(0)
- res_1 = conv_1(node_reprs)
-
- torch.random.manual_seed(0)
- res_2 = conv_2(dropout(node_reprs, 0.5))
-
- print('res_1:', res_1.detach().cpu().numpy())
- print('res_2:', res_2.detach().cpu().numpy())
-
- assert torch.all(res_1 == res_2)
-
-
- def test_dropout_graph_conv_activation_dense_01():
- _test_dropout_graph_conv_activation_01(False)
-
-
- def test_dropout_graph_conv_activation_sparse_01():
- _test_dropout_graph_conv_activation_01(True)
-
-
- def test_dropout_graph_conv_activation_dense_02():
- _test_dropout_graph_conv_activation_02(False)
-
-
- def test_dropout_graph_conv_activation_sparse_02():
- _test_dropout_graph_conv_activation_02(True)
-
-
- def test_dropout_graph_conv_activation_dense_03():
- _test_dropout_graph_conv_activation_03(False)
-
-
- def test_dropout_graph_conv_activation_sparse_03():
- _test_dropout_graph_conv_activation_03(True)
-
-
- def test_graph_conv_parameter_count_01():
- adj_mat = torch.rand((10, 20)).round()
-
- conv = GraphConv(20, 20, adj_mat)
-
- assert len(list(conv.parameters())) == 1
-
-
- def test_dropout_graph_conv_activation_parameter_count_01():
- adj_mat = torch.rand((10, 20)).round()
-
- conv = DropoutGraphConvActivation(20, 20, adj_mat)
-
- assert len(list(conv.parameters())) == 1
|