IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
25'ten fazla konu seçemezsiniz Konular bir harf veya rakamla başlamalı, kısa çizgiler ('-') içerebilir ve en fazla 35 karakter uzunluğunda olabilir.

declayer.py 3.6KB

4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
4 yıl önce
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. import torch
  6. from .data import Data
  7. from .trainprep import PreparedData, \
  8. TrainValTest
  9. from typing import Type, \
  10. List, \
  11. Callable, \
  12. Union, \
  13. Dict, \
  14. Tuple
  15. from .decode import DEDICOMDecoder
  16. from dataclasses import dataclass
  17. import time
  18. @dataclass
  19. class RelationPredictions(object):
  20. edges_pos: TrainValTest
  21. edges_neg: TrainValTest
  22. edges_back_pos: TrainValTest
  23. edges_back_neg: TrainValTest
  24. @dataclass
  25. class RelationFamilyPredictions(object):
  26. relation_types: List[RelationPredictions]
  27. @dataclass
  28. class Predictions(object):
  29. relation_families: List[RelationFamilyPredictions]
  30. class DecodeLayer(torch.nn.Module):
  31. def __init__(self,
  32. input_dim: List[int],
  33. data: PreparedData,
  34. keep_prob: float = 1.,
  35. activation: Callable[[torch.Tensor], torch.Tensor] = torch.sigmoid,
  36. **kwargs) -> None:
  37. super().__init__(**kwargs)
  38. if not isinstance(input_dim, list):
  39. raise TypeError('input_dim must be a List')
  40. if len(input_dim) != len(data.node_types):
  41. raise ValueError('input_dim must have length equal to num_node_types')
  42. if not all([ a == input_dim[0] for a in input_dim ]):
  43. raise ValueError('All elements of input_dim must have the same value')
  44. if not isinstance(data, PreparedData):
  45. raise TypeError('data must be an instance of PreparedData')
  46. self.input_dim = input_dim[0]
  47. self.output_dim = 1
  48. self.data = data
  49. self.keep_prob = keep_prob
  50. self.activation = activation
  51. self.decoders = None
  52. self.build()
  53. def build(self) -> None:
  54. self.decoders = torch.nn.ModuleList()
  55. for fam in self.data.relation_families:
  56. dec = fam.decoder_class(self.input_dim, len(fam.relation_types),
  57. self.keep_prob, self.activation)
  58. self.decoders.append(dec)
  59. def _get_tvt(self, r, edge_list_attr_names, row, column, k, last_layer_repr, dec):
  60. start_time = time.time()
  61. pred = []
  62. for p in edge_list_attr_names:
  63. tvt = []
  64. for t in ['train', 'val', 'test']:
  65. # print('r:', r)
  66. edges = getattr(getattr(r, p), t)
  67. inputs_row = last_layer_repr[row][edges[:, 0]]
  68. inputs_column = last_layer_repr[column][edges[:, 1]]
  69. tvt.append(dec(inputs_row, inputs_column, k))
  70. tvt = TrainValTest(*tvt)
  71. pred.append(tvt)
  72. print('DecodeLayer._get_tvt() took:', time.time() - start_time)
  73. return pred
  74. def forward(self, last_layer_repr: List[torch.Tensor]) -> List[List[torch.Tensor]]:
  75. t = time.time()
  76. res = []
  77. for i, fam in enumerate(self.data.relation_families):
  78. fam_pred = []
  79. for k, r in enumerate(fam.relation_types):
  80. pred = []
  81. pred += self._get_tvt(r, ['edges_pos', 'edges_neg'],
  82. r.node_type_row, r.node_type_column, k, last_layer_repr, self.decoders[i])
  83. pred += self._get_tvt(r, ['edges_back_pos', 'edges_back_neg'],
  84. r.node_type_column, r.node_type_row, k, last_layer_repr, self.decoders[i])
  85. pred = RelationPredictions(*pred)
  86. fam_pred.append(pred)
  87. fam_pred = RelationFamilyPredictions(fam_pred)
  88. res.append(fam_pred)
  89. res = Predictions(res)
  90. print('DecodeLayer.forward() took', time.time() - t)
  91. return res