IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

test_declayer.py 3.5KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. #
  2. # Copyright (C) Stanislaw Adaszewski, 2020
  3. # License: GPLv3
  4. #
  5. from icosagon.input import OneHotInputLayer
  6. from icosagon.convlayer import DecagonLayer
  7. from icosagon.declayer import DecodeLayer
  8. from icosagon.decode import DEDICOMDecoder
  9. from icosagon.data import Data
  10. from icosagon.trainprep import prepare_training, \
  11. TrainValTest
  12. import torch
  13. def test_decode_layer_01():
  14. d = Data()
  15. d.add_node_type('Dummy', 100)
  16. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  17. fam.add_relation_type('Dummy Relation 1', 0, 0,
  18. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  19. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  20. in_layer = OneHotInputLayer(d)
  21. d_layer = DecagonLayer(in_layer.output_dim, 32, d)
  22. seq = torch.nn.Sequential(in_layer, d_layer)
  23. last_layer_repr = seq(None)
  24. dec = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1.,
  25. decoder_class=DEDICOMDecoder, activation=lambda x: x)
  26. pred_adj_matrices = dec(last_layer_repr)
  27. assert isinstance(pred_adj_matrices, dict)
  28. assert len(pred_adj_matrices) == 1
  29. assert isinstance(pred_adj_matrices[0, 0], list)
  30. assert len(pred_adj_matrices[0, 0]) == 1
  31. def test_decode_layer_02():
  32. d = Data()
  33. d.add_node_type('Dummy', 100)
  34. d.add_relation_type('Dummy Relation 1', 0, 0,
  35. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  36. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  37. in_layer = OneHotInputLayer(d)
  38. d_layer = DecagonLayer(in_layer.output_dim, 32, d)
  39. dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1.,
  40. decoder_class=DEDICOMDecoder, activation=lambda x: x)
  41. seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
  42. pred_adj_matrices = seq(None)
  43. assert isinstance(pred_adj_matrices, dict)
  44. assert len(pred_adj_matrices) == 1
  45. assert isinstance(pred_adj_matrices[0, 0], list)
  46. assert len(pred_adj_matrices[0, 0]) == 1
  47. def test_decode_layer_03():
  48. d = Data()
  49. d.add_node_type('Dummy 1', 100)
  50. d.add_node_type('Dummy 2', 100)
  51. d.add_relation_type('Dummy Relation 1', 0, 1,
  52. torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
  53. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  54. in_layer = OneHotInputLayer(d)
  55. d_layer = DecagonLayer(in_layer.output_dim, 32, d)
  56. dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1.,
  57. decoder_class={(0, 1): DEDICOMDecoder}, activation=lambda x: x)
  58. seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
  59. pred_adj_matrices = seq(None)
  60. assert isinstance(pred_adj_matrices, dict)
  61. assert len(pred_adj_matrices) == 2
  62. assert isinstance(pred_adj_matrices[0, 1], list)
  63. assert isinstance(pred_adj_matrices[1, 0], list)
  64. assert len(pred_adj_matrices[0, 1]) == 1
  65. assert len(pred_adj_matrices[1, 0]) == 1
  66. def test_decode_layer_04():
  67. d = Data()
  68. d.add_node_type('Dummy', 100)
  69. assert len(d.relation_types[0, 0]) == 0
  70. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  71. in_layer = OneHotInputLayer(d)
  72. d_layer = DecagonLayer(in_layer.output_dim, 32, d)
  73. dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1.,
  74. decoder_class=DEDICOMDecoder, activation=lambda x: x)
  75. seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
  76. pred_adj_matrices = seq(None)
  77. assert isinstance(pred_adj_matrices, dict)
  78. assert len(pred_adj_matrices) == 0