IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
25개 이상의 토픽을 선택하실 수 없습니다. Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

convlayer.py 4.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. import torch
  2. from .convolve import DropoutGraphConvActivation
  3. from .data import Data
  4. from .trainprep import PreparedData
  5. from typing import List, \
  6. Union, \
  7. Callable
  8. from collections import defaultdict
  9. from dataclasses import dataclass
  10. @dataclass
  11. class Convolutions(object):
  12. node_type_column: int
  13. convolutions: List[DropoutGraphConvActivation]
  14. class DecagonLayer(torch.nn.Module):
  15. def __init__(self,
  16. input_dim: List[int],
  17. output_dim: List[int],
  18. data: Union[Data, PreparedData],
  19. keep_prob: float = 1.,
  20. rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x,
  21. layer_activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu,
  22. **kwargs):
  23. super().__init__(**kwargs)
  24. if not isinstance(input_dim, list):
  25. raise ValueError('input_dim must be a list')
  26. if not output_dim:
  27. raise ValueError('output_dim must be specified')
  28. if not isinstance(output_dim, list):
  29. output_dim = [output_dim] * len(data.node_types)
  30. if not isinstance(data, Data) and not isinstance(data, PreparedData):
  31. raise ValueError('data must be of type Data or PreparedData')
  32. self.input_dim = input_dim
  33. self.output_dim = output_dim
  34. self.data = data
  35. self.keep_prob = float(keep_prob)
  36. self.rel_activation = rel_activation
  37. self.layer_activation = layer_activation
  38. self.is_sparse = False
  39. self.next_layer_repr = None
  40. self.build()
  41. def build_fam_one_node_type(self, fam):
  42. convolutions = []
  43. for r in fam.relation_types:
  44. conv = DropoutGraphConvActivation(self.input_dim[fam.node_type_column],
  45. self.output_dim[fam.node_type_row], r.adjacency_matrix,
  46. self.keep_prob, self.rel_activation)
  47. convolutions.append(conv)
  48. self.next_layer_repr[fam.node_type_row].append(
  49. Convolutions(fam.node_type_column, convolutions))
  50. def build_fam_two_node_types(self, fam) -> None:
  51. convolutions_row = []
  52. convolutions_column = []
  53. for r in fam.relation_types:
  54. if r.adjacency_matrix is not None:
  55. conv = DropoutGraphConvActivation(self.input_dim[fam.node_type_column],
  56. self.output_dim[fam.node_type_row], r.adjacency_matrix,
  57. self.keep_prob, self.rel_activation)
  58. convolutions_row.append(conv)
  59. if r.adjacency_matrix_backward is not None:
  60. conv = DropoutGraphConvActivation(self.input_dim[fam.node_type_row],
  61. self.output_dim[fam.node_type_column], r.adjacency_matrix_backward,
  62. self.keep_prob, self.rel_activation)
  63. convolutions_column.append(conv)
  64. self.next_layer_repr[fam.node_type_row].append(
  65. Convolutions(fam.node_type_column, convolutions_row))
  66. self.next_layer_repr[fam.node_type_column].append(
  67. Convolutions(fam.node_type_row, convolutions_column))
  68. def build_family(self, fam) -> None:
  69. if fam.node_type_row == fam.node_type_column:
  70. self.build_fam_one_node_type(fam)
  71. else:
  72. self.build_fam_two_node_types(fam)
  73. def build(self):
  74. self.next_layer_repr = [ [] for _ in range(len(self.data.node_types)) ]
  75. for fam in self.data.relation_families:
  76. self.build_family(fam)
  77. def __call__(self, prev_layer_repr):
  78. next_layer_repr = [ [] for _ in range(len(self.data.node_types)) ]
  79. n = len(self.data.node_types)
  80. for node_type_row in range(n):
  81. for convolutions in self.next_layer_repr[node_type_row]:
  82. repr_ = [ conv(prev_layer_repr[convolutions.node_type_column]) \
  83. for conv in convolutions.convolutions ]
  84. repr_ = sum(repr_)
  85. repr_ = torch.nn.functional.normalize(repr_, p=2, dim=1)
  86. next_layer_repr[node_type_row].append(repr_)
  87. if len(next_layer_repr[node_type_row]) == 0:
  88. next_layer_repr[node_type_row] = torch.zeros(self.output_dim[node_type_row])
  89. else:
  90. next_layer_repr[node_type_row] = sum(next_layer_repr[node_type_row])
  91. next_layer_repr[node_type_row] = self.layer_activation(next_layer_repr[node_type_row])
  92. return next_layer_repr