IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. from icosagon.loss import CrossEntropyLoss
  2. from icosagon.declayer import Predictions, \
  3. RelationFamilyPredictions, \
  4. RelationPredictions
  5. from icosagon.data import Data
  6. from icosagon.trainprep import prepare_training, \
  7. TrainValTest
  8. import torch
  9. def test_cross_entropy_loss_01():
  10. d = Data()
  11. d.add_node_type('Dummy', 5)
  12. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  13. fam.add_relation_type('Dummy Rel', torch.tensor([
  14. [0, 1, 0, 0, 0],
  15. [1, 0, 0, 0, 0],
  16. [0, 0, 0, 1, 0],
  17. [0, 0, 0, 0, 1],
  18. [0, 1, 0, 0, 0]
  19. ], dtype=torch.float32))
  20. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  21. assert len(prep_d.relation_families) == 1
  22. assert len(prep_d.relation_families[0].relation_types) == 1
  23. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.train) == 5
  24. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.val) == 0
  25. assert len(prep_d.relation_families[0].relation_types[0].edges_pos.test) == 0
  26. rel_pred = RelationPredictions(
  27. TrainValTest(torch.tensor([1, 0, 1, 0, 1], dtype=torch.float32), torch.zeros(0), torch.zeros(0)),
  28. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0)),
  29. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0)),
  30. TrainValTest(torch.zeros(0), torch.zeros(0), torch.zeros(0))
  31. )
  32. fam_pred = RelationFamilyPredictions([ rel_pred ])
  33. pred = Predictions([ fam_pred ])
  34. loss = CrossEntropyLoss(prep_d)
  35. print('loss: %.7f' % loss(pred))
  36. assert torch.abs(loss(pred) - 55.262043) < 0.000001
  37. loss = CrossEntropyLoss(prep_d, reduction='mean')
  38. print('loss: %.7f' % loss(pred))
  39. assert torch.abs(loss(pred) - 11.0524082) < 0.000001