IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_model.py 6.7KB

4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
4 vuotta sitten
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. from icosagon.data import Data, \
  2. _equal
  3. from icosagon.model import Model
  4. from icosagon.trainprep import PreparedData, \
  5. PreparedRelationFamily, \
  6. PreparedRelationType, \
  7. TrainValTest, \
  8. norm_adj_mat_one_node_type, \
  9. prepare_training
  10. import torch
  11. from icosagon.input import OneHotInputLayer
  12. from icosagon.convlayer import DecagonLayer
  13. from icosagon.declayer import DecodeLayer
  14. import pytest
  15. def _is_identity_function(f):
  16. for x in range(-100, 101):
  17. if f(x) != x:
  18. return False
  19. return True
  20. def test_model_01():
  21. d = Data()
  22. d.add_node_type('Dummy', 10)
  23. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  24. fam.add_relation_type('Dummy Rel', torch.rand(10, 10).round())
  25. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  26. m = Model(prep_d)
  27. assert m.prep_d == prep_d
  28. assert m.layer_dimensions == [32, 64]
  29. assert m.keep_prob == 1.
  30. assert _is_identity_function(m.rel_activation)
  31. assert m.layer_activation == torch.nn.functional.relu
  32. assert _is_identity_function(m.dec_activation)
  33. assert m.lr == 0.001
  34. assert m.loss == torch.nn.functional.binary_cross_entropy_with_logits
  35. assert m.batch_size == 100
  36. assert isinstance(m.seq, torch.nn.Sequential)
  37. assert isinstance(m.opt, torch.optim.Optimizer)
  38. def test_model_02():
  39. d = Data()
  40. d.add_node_type('Dummy', 10)
  41. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  42. mat = torch.rand(10, 10).round().to_sparse()
  43. fam.add_relation_type('Dummy Rel', mat)
  44. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  45. m = Model(prep_d)
  46. assert isinstance(m.prep_d, PreparedData)
  47. assert isinstance(m.prep_d.relation_families, list)
  48. assert len(m.prep_d.relation_families) == 1
  49. assert isinstance(m.prep_d.relation_families[0], PreparedRelationFamily)
  50. assert len(m.prep_d.relation_families[0].relation_types) == 1
  51. assert isinstance(m.prep_d.relation_families[0].relation_types[0], PreparedRelationType)
  52. assert m.prep_d.relation_families[0].relation_types[0].adjacency_matrix_backward is None
  53. assert torch.all(_equal(m.prep_d.relation_families[0].relation_types[0].adjacency_matrix,
  54. norm_adj_mat_one_node_type(mat)))
  55. assert isinstance(m.seq[0], OneHotInputLayer)
  56. assert isinstance(m.seq[1], DecagonLayer)
  57. assert isinstance(m.seq[2], DecagonLayer)
  58. assert isinstance(m.seq[3], DecodeLayer)
  59. assert len(m.seq) == 4
  60. def test_model_03():
  61. d = Data()
  62. d.add_node_type('Dummy', 10)
  63. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  64. mat = torch.rand(10, 10).round().to_sparse()
  65. fam.add_relation_type('Dummy Rel', mat)
  66. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  67. m = Model(prep_d)
  68. state_dict = m.opt.state_dict()
  69. assert isinstance(state_dict, dict)
  70. # print(state_dict['param_groups'])
  71. # print(list(m.seq.parameters()))
  72. assert len(list(m.seq[0].parameters())) == 1
  73. assert len(list(m.seq[1].parameters())) == 1
  74. assert len(list(m.seq[2].parameters())) == 1
  75. assert len(list(m.seq[3].parameters())) == 2
  76. # print(list(m.seq[1].parameters()))
  77. def test_model_04():
  78. d = Data()
  79. d.add_node_type('Dummy', 10)
  80. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  81. mat = torch.rand(10, 10).round().to_sparse()
  82. fam.add_relation_type('Dummy Rel 1', mat)
  83. fam.add_relation_type('Dummy Rel 2', mat.clone())
  84. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  85. m = Model(prep_d)
  86. assert len(list(m.seq[0].parameters())) == 1
  87. assert len(list(m.seq[1].parameters())) == 2
  88. assert len(list(m.seq[2].parameters())) == 2
  89. assert len(list(m.seq[3].parameters())) == 3
  90. def test_model_05():
  91. d = Data()
  92. d.add_node_type('Dummy', 10)
  93. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  94. mat = torch.rand(10, 10).round().to_sparse()
  95. fam.add_relation_type('Dummy Rel 1', mat)
  96. fam.add_relation_type('Dummy Rel 2', mat.clone())
  97. fam = d.add_relation_family('Dummy-Dummy 2', 0, 0, False)
  98. mat = torch.rand(10, 10).round().to_sparse()
  99. fam.add_relation_type('Dummy Rel 2-1', mat)
  100. fam.add_relation_type('Dummy Rel 2-2', mat.clone())
  101. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  102. m = Model(prep_d)
  103. assert len(list(m.seq[0].parameters())) == 1
  104. assert len(list(m.seq[1].parameters())) == 4
  105. assert len(list(m.seq[2].parameters())) == 4
  106. assert len(list(m.seq[3].parameters())) == 6
  107. def test_model_06():
  108. d = Data()
  109. d.add_node_type('Dummy', 10)
  110. d.add_node_type('Foobar', 20)
  111. fam = d.add_relation_family('Dummy-Foobar', 0, 1, True)
  112. mat = torch.rand(10, 20).round().to_sparse()
  113. fam.add_relation_type('Dummy Rel 1', mat)
  114. fam.add_relation_type('Dummy Rel 2', mat.clone())
  115. fam = d.add_relation_family('Dummy-Dummy 2', 0, 0, False)
  116. mat = torch.rand(10, 10).round().to_sparse()
  117. fam.add_relation_type('Dummy Rel 2-1', mat)
  118. fam.add_relation_type('Dummy Rel 2-2', mat.clone())
  119. prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
  120. m = Model(prep_d)
  121. assert len(list(m.seq[0].parameters())) == 2
  122. assert len(list(m.seq[1].parameters())) == 6
  123. assert len(list(m.seq[2].parameters())) == 6
  124. assert len(list(m.seq[3].parameters())) == 6
  125. def test_model_07():
  126. d = Data()
  127. d.add_node_type('Dummy', 10)
  128. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  129. fam.add_relation_type('Dummy Rel', torch.rand(10, 10).round())
  130. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  131. with pytest.raises(TypeError):
  132. m = Model(1)
  133. with pytest.raises(TypeError):
  134. m = Model(prep_d, layer_dimensions=1)
  135. with pytest.raises(TypeError):
  136. m = Model(prep_d, ratios=1)
  137. with pytest.raises(ValueError):
  138. m = Model(prep_d, keep_prob='x')
  139. with pytest.raises(TypeError):
  140. m = Model(prep_d, rel_activation='x')
  141. with pytest.raises(TypeError):
  142. m = Model(prep_d, layer_activation='x')
  143. with pytest.raises(TypeError):
  144. m = Model(prep_d, dec_activation='x')
  145. with pytest.raises(ValueError):
  146. m = Model(prep_d, lr='x')
  147. with pytest.raises(TypeError):
  148. m = Model(prep_d, loss=1)
  149. with pytest.raises(ValueError):
  150. m = Model(prep_d, batch_size='x')
  151. def test_model_08():
  152. d = Data()
  153. d.add_node_type('Dummy', 10)
  154. fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
  155. fam.add_relation_type('Dummy Rel', torch.rand(10, 10).round())
  156. prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
  157. m = Model(prep_d)
  158. m.run_epoch()