IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

test_normalize.py 6.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. from icosagon.normalize import add_eye_sparse, \
  2. norm_adj_mat_one_node_type_sparse, \
  3. norm_adj_mat_one_node_type_dense, \
  4. norm_adj_mat_one_node_type, \
  5. norm_adj_mat_two_node_types_sparse, \
  6. norm_adj_mat_two_node_types_dense, \
  7. norm_adj_mat_two_node_types
  8. import decagon_pytorch.normalize
  9. import torch
  10. import pytest
  11. import numpy as np
  12. from math import sqrt
  13. def test_add_eye_sparse_01():
  14. adj_mat_dense = torch.rand((10, 10))
  15. adj_mat_sparse = adj_mat_dense.to_sparse()
  16. adj_mat_dense += torch.eye(10)
  17. adj_mat_sparse = add_eye_sparse(adj_mat_sparse)
  18. assert torch.all(adj_mat_sparse.to_dense() == adj_mat_dense)
  19. def test_add_eye_sparse_02():
  20. adj_mat_dense = torch.rand((10, 20))
  21. adj_mat_sparse = adj_mat_dense.to_sparse()
  22. with pytest.raises(ValueError):
  23. _ = add_eye_sparse(adj_mat_sparse)
  24. def test_add_eye_sparse_03():
  25. adj_mat_dense = torch.rand((10, 10))
  26. with pytest.raises(ValueError):
  27. _ = add_eye_sparse(adj_mat_dense)
  28. def test_add_eye_sparse_04():
  29. adj_mat_dense = np.random.rand(10, 10)
  30. with pytest.raises(ValueError):
  31. _ = add_eye_sparse(adj_mat_dense)
  32. def test_norm_adj_mat_one_node_type_sparse_01():
  33. adj_mat = torch.rand((10, 10))
  34. adj_mat = (adj_mat > .5)
  35. adj_mat = adj_mat.to_sparse()
  36. _ = norm_adj_mat_one_node_type_sparse(adj_mat)
  37. def test_norm_adj_mat_one_node_type_sparse_02():
  38. adj_mat_dense = torch.rand((10, 10))
  39. adj_mat_dense = (adj_mat_dense > .5)
  40. adj_mat_sparse = adj_mat_dense.to_sparse()
  41. adj_mat_sparse = norm_adj_mat_one_node_type_sparse(adj_mat_sparse)
  42. adj_mat_dense = norm_adj_mat_one_node_type_dense(adj_mat_dense)
  43. assert torch.all(adj_mat_sparse.to_dense() - adj_mat_dense < 0.000001)
  44. def test_norm_adj_mat_one_node_type_dense_01():
  45. adj_mat = torch.rand((10, 10))
  46. adj_mat = (adj_mat > .5)
  47. _ = norm_adj_mat_one_node_type_dense(adj_mat)
  48. def test_norm_adj_mat_one_node_type_dense_02():
  49. adj_mat = torch.tensor([
  50. [0, 1, 1, 0], # 3
  51. [1, 0, 1, 0], # 3
  52. [1, 1, 0, 1], # 4
  53. [0, 0, 1, 0] # 2
  54. # 3 3 4 2
  55. ])
  56. expect_denom = np.array([
  57. [ 3, 3, sqrt(3)*2, sqrt(6) ],
  58. [ 3, 3, sqrt(3)*2, sqrt(6) ],
  59. [ sqrt(3)*2, sqrt(3)*2, 4, sqrt(2)*2 ],
  60. [ sqrt(6), sqrt(6), sqrt(2)*2, 2 ]
  61. ], dtype=np.float32)
  62. expect = (adj_mat.detach().cpu().numpy().astype(np.float32) + np.eye(4)) / expect_denom
  63. # expect = np.array([
  64. # [1/3, 1/3, 1/3, 0],
  65. # [1/3, 1/3, 1/3, 0],
  66. # [1/4, 1/4, 1/4, 1/4],
  67. # [0, 0, 1/2, 1/2]
  68. # ], dtype=np.float32)
  69. res = decagon_pytorch.normalize.norm_adj_mat_one_node_type(adj_mat)
  70. res = res.todense().astype(np.float32)
  71. print('res:', res)
  72. print('expect:', expect)
  73. assert np.all(res - expect < 0.000001)
  74. def test_norm_adj_mat_one_node_type_dense_03():
  75. # adj_mat = torch.rand((10, 10))
  76. adj_mat = torch.tensor([
  77. [0, 1, 1, 0, 0],
  78. [1, 0, 1, 0, 1],
  79. [1, 1, 0, .5, .5],
  80. [0, 0, .5, 0, 1],
  81. [0, 1, .5, 1, 0]
  82. ])
  83. # adj_mat = (adj_mat > .5)
  84. adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_one_node_type(adj_mat)
  85. adj_mat_ico = norm_adj_mat_one_node_type_dense(adj_mat)
  86. adj_mat_dec = adj_mat_dec.todense()
  87. adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
  88. print('adj_mat_dec:', adj_mat_dec)
  89. print('adj_mat_ico:', adj_mat_ico)
  90. assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)
  91. def test_norm_adj_mat_two_node_types_sparse_01():
  92. adj_mat = torch.rand((10, 20))
  93. adj_mat = (adj_mat > .5)
  94. adj_mat = adj_mat.to_sparse()
  95. _ = norm_adj_mat_two_node_types_sparse(adj_mat)
  96. def test_norm_adj_mat_two_node_types_sparse_02():
  97. adj_mat_dense = torch.rand((10, 20))
  98. adj_mat_dense = (adj_mat_dense > .5)
  99. adj_mat_sparse = adj_mat_dense.to_sparse()
  100. adj_mat_sparse = norm_adj_mat_two_node_types_sparse(adj_mat_sparse)
  101. adj_mat_dense = norm_adj_mat_two_node_types_dense(adj_mat_dense)
  102. assert torch.all(adj_mat_sparse.to_dense() - adj_mat_dense < 0.000001)
  103. def test_norm_adj_mat_two_node_types_dense_01():
  104. adj_mat = torch.rand((10, 20))
  105. adj_mat = (adj_mat > .5)
  106. _ = norm_adj_mat_two_node_types_dense(adj_mat)
  107. def test_norm_adj_mat_two_node_types_dense_02():
  108. adj_mat = torch.tensor([
  109. [0, 1, 1, 0], # 2
  110. [1, 0, 1, 0], # 2
  111. [1, 1, 0, 1], # 3
  112. [0, 0, 1, 0] # 1
  113. # 2 2 3 1
  114. ])
  115. expect_denom = np.array([
  116. [ 2, 2, sqrt(6), sqrt(2) ],
  117. [ 2, 2, sqrt(6), sqrt(2) ],
  118. [ sqrt(6), sqrt(6), 3, sqrt(3) ],
  119. [ sqrt(2), sqrt(2), sqrt(3), 1 ]
  120. ], dtype=np.float32)
  121. expect = adj_mat.detach().cpu().numpy().astype(np.float32) / expect_denom
  122. res = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
  123. res = res.todense().astype(np.float32)
  124. print('res:', res)
  125. print('expect:', expect)
  126. assert np.all(res - expect < 0.000001)
  127. def test_norm_adj_mat_two_node_types_dense_03():
  128. adj_mat = torch.tensor([
  129. [0, 1, 1, 0, 0],
  130. [1, 0, 1, 0, 1],
  131. [1, 1, 0, .5, .5],
  132. [0, 0, .5, 0, 1],
  133. [0, 1, .5, 1, 0]
  134. ])
  135. adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
  136. adj_mat_ico = norm_adj_mat_two_node_types_dense(adj_mat)
  137. adj_mat_dec = adj_mat_dec.todense()
  138. adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
  139. print('adj_mat_dec:', adj_mat_dec)
  140. print('adj_mat_ico:', adj_mat_ico)
  141. assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)
  142. def test_norm_adj_mat_two_node_types_dense_04():
  143. adj_mat = torch.rand((10, 20))
  144. adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
  145. adj_mat_ico = norm_adj_mat_two_node_types_dense(adj_mat)
  146. adj_mat_dec = adj_mat_dec.todense()
  147. adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
  148. print('adj_mat_dec:', adj_mat_dec)
  149. print('adj_mat_ico:', adj_mat_ico)
  150. assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)