IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

test_convolve.py 5.1KB

4 anos atrás
4 anos atrás
4 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. from icosagon.convolve import GraphConv, \
  2. DropoutGraphConvActivation
  3. import torch
  4. from icosagon.dropout import dropout
  5. def _test_graph_conv_01(use_sparse: bool):
  6. adj_mat = torch.rand((10, 20))
  7. adj_mat[adj_mat < .5] = 0
  8. adj_mat = torch.ceil(adj_mat)
  9. node_reprs = torch.eye(20)
  10. graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
  11. if use_sparse else adj_mat)
  12. graph_conv.weight = torch.eye(20)
  13. res = graph_conv(node_reprs)
  14. assert torch.all(res == adj_mat)
  15. def _test_graph_conv_02(use_sparse: bool):
  16. adj_mat = torch.rand((10, 20))
  17. adj_mat[adj_mat < .5] = 0
  18. adj_mat = torch.ceil(adj_mat)
  19. node_reprs = torch.eye(20)
  20. graph_conv = GraphConv(20, 20, adj_mat.to_sparse() \
  21. if use_sparse else adj_mat)
  22. graph_conv.weight = torch.eye(20) * 2
  23. res = graph_conv(node_reprs)
  24. assert torch.all(res == adj_mat * 2)
  25. def _test_graph_conv_03(use_sparse: bool):
  26. adj_mat = torch.tensor([
  27. [1, 0, 1, 0, 1, 0], # [1, 0, 0]
  28. [1, 0, 1, 0, 0, 1], # [1, 0, 0]
  29. [1, 1, 0, 1, 0, 0], # [0, 1, 0]
  30. [0, 0, 0, 1, 0, 1], # [0, 1, 0]
  31. [1, 1, 1, 1, 1, 1], # [0, 0, 1]
  32. [0, 0, 0, 1, 1, 1] # [0, 0, 1]
  33. ], dtype=torch.float32)
  34. expect = torch.tensor([
  35. [1, 1, 1],
  36. [1, 1, 1],
  37. [2, 1, 0],
  38. [0, 1, 1],
  39. [2, 2, 2],
  40. [0, 1, 2]
  41. ], dtype=torch.float32)
  42. node_reprs = torch.eye(6)
  43. graph_conv = GraphConv(6, 3, adj_mat.to_sparse() \
  44. if use_sparse else adj_mat)
  45. graph_conv.weight = torch.tensor([
  46. [1, 0, 0],
  47. [1, 0, 0],
  48. [0, 1, 0],
  49. [0, 1, 0],
  50. [0, 0, 1],
  51. [0, 0, 1]
  52. ], dtype=torch.float32)
  53. res = graph_conv(node_reprs)
  54. assert torch.all(res == expect)
  55. def test_graph_conv_dense_01():
  56. _test_graph_conv_01(use_sparse=False)
  57. def test_graph_conv_dense_02():
  58. _test_graph_conv_02(use_sparse=False)
  59. def test_graph_conv_dense_03():
  60. _test_graph_conv_03(use_sparse=False)
  61. def test_graph_conv_sparse_01():
  62. _test_graph_conv_01(use_sparse=True)
  63. def test_graph_conv_sparse_02():
  64. _test_graph_conv_02(use_sparse=True)
  65. def test_graph_conv_sparse_03():
  66. _test_graph_conv_03(use_sparse=True)
  67. def _test_dropout_graph_conv_activation_01(use_sparse: bool):
  68. adj_mat = torch.rand((10, 20))
  69. adj_mat[adj_mat < .5] = 0
  70. adj_mat = torch.ceil(adj_mat)
  71. node_reprs = torch.eye(20)
  72. conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
  73. if use_sparse else adj_mat, keep_prob=1.,
  74. activation=lambda x: x)
  75. conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
  76. if use_sparse else adj_mat)
  77. conv_2.weight = conv_1.graph_conv.weight
  78. res_1 = conv_1(node_reprs)
  79. res_2 = conv_2(node_reprs)
  80. print('res_1:', res_1.detach().cpu().numpy())
  81. print('res_2:', res_2.detach().cpu().numpy())
  82. assert torch.all(res_1 == res_2)
  83. def _test_dropout_graph_conv_activation_02(use_sparse: bool):
  84. adj_mat = torch.rand((10, 20))
  85. adj_mat[adj_mat < .5] = 0
  86. adj_mat = torch.ceil(adj_mat)
  87. node_reprs = torch.eye(20)
  88. conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
  89. if use_sparse else adj_mat, keep_prob=1.,
  90. activation=lambda x: x * 2)
  91. conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
  92. if use_sparse else adj_mat)
  93. conv_2.weight = conv_1.graph_conv.weight
  94. res_1 = conv_1(node_reprs)
  95. res_2 = conv_2(node_reprs)
  96. print('res_1:', res_1.detach().cpu().numpy())
  97. print('res_2:', res_2.detach().cpu().numpy())
  98. assert torch.all(res_1 == res_2 * 2)
  99. def _test_dropout_graph_conv_activation_03(use_sparse: bool):
  100. adj_mat = torch.rand((10, 20))
  101. adj_mat[adj_mat < .5] = 0
  102. adj_mat = torch.ceil(adj_mat)
  103. node_reprs = torch.eye(20)
  104. conv_1 = DropoutGraphConvActivation(20, 20, adj_mat.to_sparse() \
  105. if use_sparse else adj_mat, keep_prob=.5,
  106. activation=lambda x: x)
  107. conv_2 = GraphConv(20, 20, adj_mat.to_sparse() \
  108. if use_sparse else adj_mat)
  109. conv_2.weight = conv_1.graph_conv.weight
  110. torch.random.manual_seed(0)
  111. res_1 = conv_1(node_reprs)
  112. torch.random.manual_seed(0)
  113. res_2 = conv_2(dropout(node_reprs, 0.5))
  114. print('res_1:', res_1.detach().cpu().numpy())
  115. print('res_2:', res_2.detach().cpu().numpy())
  116. assert torch.all(res_1 == res_2)
  117. def test_dropout_graph_conv_activation_dense_01():
  118. _test_dropout_graph_conv_activation_01(False)
  119. def test_dropout_graph_conv_activation_sparse_01():
  120. _test_dropout_graph_conv_activation_01(True)
  121. def test_dropout_graph_conv_activation_dense_02():
  122. _test_dropout_graph_conv_activation_02(False)
  123. def test_dropout_graph_conv_activation_sparse_02():
  124. _test_dropout_graph_conv_activation_02(True)
  125. def test_dropout_graph_conv_activation_dense_03():
  126. _test_dropout_graph_conv_activation_03(False)
  127. def test_dropout_graph_conv_activation_sparse_03():
  128. _test_dropout_graph_conv_activation_03(True)