IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Sfoglia il codice sorgente

Add _sparse_diag_cat().

master
Stanislaw Adaszewski 4 anni fa
parent
commit
058d4d43fb
2 ha cambiato i file con 49 aggiunte e 1 eliminazioni
  1. +32
    -1
      src/icosagon/fastconv.py
  2. +17
    -0
      tests/icosagon/test_fastconv.py

+ 32
- 1
src/icosagon/fastconv.py Vedi File

@@ -5,6 +5,37 @@ from .data import Data
from .trainprep import PreparedData
import torch
from .weights import init_glorot
from .normalize import _sparse_coo_tensor
def _sparse_diag_cat(matrices: List[torch.Tensor]):
if len(matrices) == 0:
raise ValueError('The list of matrices must be non-empty')
if not all(m.is_sparse for m in matrices):
raise ValueError('All matrices must be sparse')
if not all(len(m.shape) == 2 for m in matrices):
raise ValueError('All matrices must be 2D')
indices = []
values = []
row_offset = 0
col_offset = 0
for m in matrices:
ind = m._indices().clone()
ind[0] += row_offset
ind[1] += col_offset
indices.append(ind)
values.append(m._values())
row_offset += m.shape[0]
col_offset += m.shape[1]
indices = torch.cat(indices, dim=1)
values = torch.cat(values)
return _sparse_coo_tensor(indices, values, size=(row_offset, col_offset))
def _cat(matrices: List[torch.Tensor]):
@@ -79,7 +110,7 @@ class FastConvLayer(torch.nn.Module):
output_dim: List[int],
data: Union[Data, PreparedData],
keep_prob: float = 1.,
rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x
rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x,
layer_activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu,
**kwargs):


+ 17
- 0
tests/icosagon/test_fastconv.py Vedi File

@@ -0,0 +1,17 @@
from icosagon.fastconv import _sparse_diag_cat
import torch
def test_sparse_diag_cat_01():
matrices = [ torch.rand(5, 10).round() for _ in range(7) ]
ground_truth = torch.zeros(35, 70)
ground_truth[0:5, 0:10] = matrices[0]
ground_truth[5:10, 10:20] = matrices[1]
ground_truth[10:15, 20:30] = matrices[2]
ground_truth[15:20, 30:40] = matrices[3]
ground_truth[20:25, 40:50] = matrices[4]
ground_truth[25:30, 50:60] = matrices[5]
ground_truth[30:35, 60:70] = matrices[6]
res = _sparse_diag_cat([ m.to_sparse() for m in matrices ])
res = res.to_dense()
assert torch.all(res == ground_truth)

Loading…
Annulla
Salva