|
|
@@ -55,22 +55,24 @@ def test_decode_layer_01(): |
|
|
|
def test_decode_layer_02():
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Dummy', 100)
|
|
|
|
d.add_relation_type('Dummy Relation 1', 0, 0,
|
|
|
|
fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
|
|
|
|
fam.add_relation_type('Dummy Relation 1',
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
|
|
|
|
prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
|
|
|
|
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
d_layer = DecagonLayer(in_layer.output_dim, 32, d)
|
|
|
|
dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1.,
|
|
|
|
decoder_class=DEDICOMDecoder, activation=lambda x: x)
|
|
|
|
dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d,
|
|
|
|
keep_prob=1., activation=lambda x: x)
|
|
|
|
seq = torch.nn.Sequential(in_layer, d_layer, dec_layer)
|
|
|
|
|
|
|
|
pred_adj_matrices = seq(None)
|
|
|
|
pred = seq(None)
|
|
|
|
|
|
|
|
assert isinstance(pred_adj_matrices, dict)
|
|
|
|
assert len(pred_adj_matrices) == 1
|
|
|
|
assert isinstance(pred_adj_matrices[0, 0], list)
|
|
|
|
assert len(pred_adj_matrices[0, 0]) == 1
|
|
|
|
assert isinstance(pred, Predictions)
|
|
|
|
assert len(pred.relation_families) == 1
|
|
|
|
assert isinstance(pred.relation_families[0], RelationFamilyPredictions)
|
|
|
|
assert isinstance(pred.relation_families[0].relation_types, list)
|
|
|
|
assert len(pred.relation_families[0].relation_types) == 1
|
|
|
|
|
|
|
|
|
|
|
|
def test_decode_layer_03():
|
|
|
|