IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Explorar el Código

Fixes for the GPU.

master
Stanislaw Adaszewski hace 4 años
padre
commit
0a0a524dc8
Se han modificado 6 ficheros con 64 adiciones y 14 borrados
  1. +11
    -5
      experiments/decagon_run/decagon_run.py
  2. +2
    -0
      src/icosagon/convolve.py
  3. +8
    -5
      src/icosagon/normalize.py
  4. +5
    -0
      src/icosagon/sampling.py
  5. +7
    -4
      src/icosagon/trainprep.py
  6. +31
    -0
      tests/icosagon/test_trainloop.py

+ 11
- 5
experiments/decagon_run/decagon_run.py Ver fichero

@@ -19,7 +19,7 @@ def index(a, x):
raise ValueError
def load_data():
def load_data(dev):
path = '/pstore/data/data_science/ref/decagon'
df_combo = pd.read_csv(os.path.join(path, 'bio-decagon-combo.csv'))
df_effcat = pd.read_csv(os.path.join(path, 'bio-decagon-effectcategories.csv'))
@@ -57,7 +57,8 @@ def load_data():
indices = torch.tensor(indices).transpose(0, 1)
values = torch.ones(len(rows))
print('indices.shape:', indices.shape, 'values.shape:', values.shape)
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(genes),) * 2)
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(genes),) * 2,
device=dev)
adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
print('adj_mat created')
fam = data.add_relation_family('PPI', 0, 0, True)
@@ -70,7 +71,8 @@ def load_data():
indices = list(zip(rows, cols))
indices = torch.tensor(indices).transpose(0, 1)
values = torch.ones(len(rows))
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(genes)))
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(genes)),
device=dev)
fam = data.add_relation_family('Drug-Gene (Target)', 1, 0, True)
rel = fam.add_relation_type('Drug-Gene (Target)', adj_mat)
print('OK')
@@ -86,7 +88,8 @@ def load_data():
indices = list(zip(rows, cols))
indices = torch.tensor(indices).transpose(0, 1)
values = torch.ones(len(rows))
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(drugs)))
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(drugs), len(drugs)),
device=dev)
adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
rel = fam.add_relation_type(df['Polypharmacy Side Effect'], adj_mat)
print()
@@ -106,10 +109,13 @@ def _wrap(obj, method_name):
def main():
data = load_data()
dev = torch.device('cuda:0')
data = load_data(dev)
prep_d = prepare_training(data, TrainValTest(.8, .1, .1))
_wrap(Model, 'build')
model = Model(prep_d)
model = model.to(dev)
# model = torch.nn.DataParallel(model, ['cuda:0', 'cuda:1'])
_wrap(TrainLoop, 'build')
_wrap(TrainLoop, 'run_epoch')
loop = TrainLoop(model, batch_size=1000000)


+ 2
- 0
src/icosagon/convolve.py Ver fichero

@@ -8,6 +8,7 @@ import torch
from .dropout import dropout
from .weights import init_glorot
from typing import List, Callable
import pdb
class GraphConv(torch.nn.Module):
@@ -44,6 +45,7 @@ class DropoutGraphConvActivation(torch.nn.Module):
self.graph_conv = GraphConv(input_dim, output_dim, adjacency_matrix)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# pdb.set_trace()
x = dropout(x, self.keep_prob)
x = self.graph_conv(x)
x = self.activation(x)


+ 8
- 5
src/icosagon/normalize.py Ver fichero

@@ -44,9 +44,11 @@ def add_eye_sparse(adj_mat: torch.Tensor) -> torch.Tensor:
indices = adj_mat.indices()
values = adj_mat.values()
eye_indices = torch.arange(adj_mat.shape[0], dtype=indices.dtype).view(1, -1)
eye_indices = torch.arange(adj_mat.shape[0], dtype=indices.dtype,
device=adj_mat.device).view(1, -1)
eye_indices = torch.cat((eye_indices, eye_indices), 0)
eye_values = torch.ones(adj_mat.shape[0], dtype=values.dtype)
eye_values = torch.ones(adj_mat.shape[0], dtype=values.dtype,
device=adj_mat.device)
indices = torch.cat((indices, eye_indices), 1)
values = torch.cat((values, eye_values), 0)
@@ -72,7 +74,8 @@ def norm_adj_mat_one_node_type_dense(adj_mat: torch.Tensor) -> torch.Tensor:
_check_dense(adj_mat)
_check_square(adj_mat)
adj_mat = adj_mat + torch.eye(adj_mat.shape[0], dtype=adj_mat.dtype)
adj_mat = adj_mat + torch.eye(adj_mat.shape[0], dtype=adj_mat.dtype,
device=adj_mat.device)
adj_mat = norm_adj_mat_two_node_types_dense(adj_mat)
return adj_mat
@@ -96,9 +99,9 @@ def norm_adj_mat_two_node_types_sparse(adj_mat: torch.Tensor) -> torch.Tensor:
adj_mat = adj_mat.coalesce()
indices = adj_mat.indices()
values = adj_mat.values()
degrees_row = torch.zeros(adj_mat.shape[0])
degrees_row = torch.zeros(adj_mat.shape[0], device=adj_mat.device)
degrees_row = degrees_row.index_add(0, indices[0], values.to(degrees_row.dtype))
degrees_col = torch.zeros(adj_mat.shape[1])
degrees_col = torch.zeros(adj_mat.shape[1], device=adj_mat.device)
degrees_col = degrees_col.index_add(0, indices[1], values.to(degrees_col.dtype))
values = values.to(degrees_row.dtype) / torch.sqrt(degrees_row[indices[0]] * degrees_col[indices[1]])
adj_mat = torch.sparse_coo_tensor(indices=indices, values=values, size=adj_mat.shape)


+ 5
- 0
src/icosagon/sampling.py Ver fichero

@@ -18,8 +18,13 @@ def fixed_unigram_candidate_sampler(
if isinstance(true_classes, torch.Tensor):
true_classes = true_classes.detach().cpu().numpy()
if isinstance(unigrams, torch.Tensor):
unigrams = unigrams.detach().cpu().numpy()
if len(true_classes.shape) != 2:
raise ValueError('true_classes must be a 2D matrix with shape (num_samples, num_true)')
num_samples = true_classes.shape[0]
unigrams = np.array(unigrams)
if distortion != 1.:


+ 7
- 4
src/icosagon/trainprep.py Ver fichero

@@ -83,9 +83,11 @@ def train_val_test_split_edges(edges: torch.Tensor,
def get_edges_and_degrees(adj_mat: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if adj_mat.is_sparse:
adj_mat = adj_mat.coalesce()
degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64)
degrees = torch.zeros(adj_mat.shape[1], dtype=torch.int64,
device=adj_mat.device)
degrees = degrees.index_add(0, adj_mat.indices()[1],
torch.ones(adj_mat.indices().shape[1], dtype=torch.int64))
torch.ones(adj_mat.indices().shape[1], dtype=torch.int64,
device=adj_mat.device))
edges_pos = adj_mat.indices().transpose(0, 1)
else:
degrees = adj_mat.sum(0)
@@ -102,7 +104,7 @@ def prepare_adj_mat(adj_mat: torch.Tensor,
edges_pos, degrees = get_edges_and_degrees(adj_mat)
neg_neighbors = fixed_unigram_candidate_sampler(
edges_pos[:, 1].view(-1, 1), degrees, 0.75)
edges_pos[:, 1].view(-1, 1), degrees, 0.75).to(adj_mat.device)
print(edges_pos.dtype)
print(neg_neighbors.dtype)
edges_neg = torch.cat((edges_pos[:, 0].view(-1, 1), neg_neighbors.view(-1, 1)), 1)
@@ -111,7 +113,8 @@ def prepare_adj_mat(adj_mat: torch.Tensor,
edges_neg = train_val_test_split_edges(edges_neg, ratios)
adj_mat_train = torch.sparse_coo_tensor(indices = edges_pos.train.transpose(0, 1),
values=torch.ones(len(edges_pos.train)), size=adj_mat.shape, dtype=adj_mat.dtype)
values=torch.ones(len(edges_pos.train)), size=adj_mat.shape, dtype=adj_mat.dtype,
device=adj_mat.device)
return adj_mat_train, edges_pos, edges_neg


+ 31
- 0
tests/icosagon/test_trainloop.py Ver fichero

@@ -4,6 +4,8 @@ from icosagon.trainprep import prepare_training, \
from icosagon.model import Model
from icosagon.trainloop import TrainLoop
import torch
import pytest
import pdb
def test_train_loop_01():
@@ -37,3 +39,32 @@ def test_train_loop_02():
loop = TrainLoop(m)
loop.run_epoch()
def test_train_loop_03():
if torch.cuda.device_count() == 0:
pytest.skip('CUDA required for this test')
adj_mat = torch.rand(10, 10).round()
dev = torch.device('cuda:0')
adj_mat = adj_mat.to(dev)
d = Data()
d.add_node_type('Dummy', 10)
fam = d.add_relation_family('Dummy-Dummy', 0, 0, False)
fam.add_relation_type('Dummy Rel', adj_mat)
prep_d = prepare_training(d, TrainValTest(.8, .1, .1))
# pdb.set_trace()
m = Model(prep_d)
m = m.to(dev)
print(list(m.parameters()))
for prm in m.parameters():
assert prm.device == dev
loop = TrainLoop(m)
loop.run_epoch()

Cargando…
Cancelar
Guardar