@@ -1,165 +0,0 @@ | |||||
# | |||||
# This module implements a single layer of the Decagon | |||||
# model. This is going to be already quite complex, as | |||||
# we will be using all the graph convolutional building | |||||
# blocks. | |||||
# | |||||
# h_{i}^(k+1) = ϕ(∑_r ∑_{j∈N{r}^{i}} c_{r}^{ij} * \ | |||||
# W_{r}^(k) h_{j}^{k} + c_{r}^{i} h_{i}^(k)) | |||||
# | |||||
# N{r}^{i} - set of neighbors of node i under relation r | |||||
# W_{r}^(k) - relation-type specific weight matrix | |||||
# h_{i}^(k) - hidden state of node i in layer k | |||||
# h_{i}^(k)∈R^{d(k)} where d(k) is the dimensionality | |||||
# of the representation in k-th layer | |||||
# ϕ - activation function | |||||
# c_{r}^{ij} - normalization constants | |||||
# c_{r}^{ij} = 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) | |||||
# c_{r}^{i} - normalization constants | |||||
# c_{r}^{i} = 1/|N_{r}^{i}| | |||||
# | |||||
import torch | |||||
from .convolve import DropoutGraphConvActivation | |||||
from .data import Data | |||||
from typing import List, \ | |||||
Union, \ | |||||
Callable | |||||
from collections import defaultdict | |||||
class Layer(torch.nn.Module): | |||||
def __init__(self, | |||||
output_dim: Union[int, List[int]], | |||||
is_sparse: bool, | |||||
**kwargs) -> None: | |||||
super().__init__(**kwargs) | |||||
self.output_dim = output_dim | |||||
self.is_sparse = is_sparse | |||||
class InputLayer(Layer): | |||||
def __init__(self, data: Data, output_dim: Union[int, List[int]]= None, **kwargs) -> None: | |||||
output_dim = output_dim or \ | |||||
list(map(lambda a: a.count, data.node_types)) | |||||
if not isinstance(output_dim, list): | |||||
output_dim = [output_dim,] * len(data.node_types) | |||||
super().__init__(output_dim, is_sparse=False, **kwargs) | |||||
self.data = data | |||||
self.node_reps = None | |||||
self.build() | |||||
def build(self) -> None: | |||||
self.node_reps = [] | |||||
for i, nt in enumerate(self.data.node_types): | |||||
reps = torch.rand(nt.count, self.output_dim[i]) | |||||
reps = torch.nn.Parameter(reps) | |||||
self.register_parameter('node_reps[%d]' % i, reps) | |||||
self.node_reps.append(reps) | |||||
def forward(self) -> List[torch.nn.Parameter]: | |||||
return self.node_reps | |||||
def __repr__(self) -> str: | |||||
s = '' | |||||
s += 'GNN input layer with output_dim: %s\n' % self.output_dim | |||||
s += ' # of node types: %d\n' % len(self.data.node_types) | |||||
for nt in self.data.node_types: | |||||
s += ' - %s (%d)\n' % (nt.name, nt.count) | |||||
return s.strip() | |||||
class OneHotInputLayer(Layer): | |||||
def __init__(self, data: Data, **kwargs) -> None: | |||||
output_dim = [ a.count for a in data.node_types ] | |||||
super().__init__(output_dim, is_sparse=True, **kwargs) | |||||
self.data = data | |||||
self.node_reps = None | |||||
self.build() | |||||
def build(self) -> None: | |||||
self.node_reps = [] | |||||
for i, nt in enumerate(self.data.node_types): | |||||
reps = torch.eye(nt.count).to_sparse() | |||||
reps = torch.nn.Parameter(reps) | |||||
self.register_parameter('node_reps[%d]' % i, reps) | |||||
self.node_reps.append(reps) | |||||
def forward(self) -> List[torch.nn.Parameter]: | |||||
return self.node_reps | |||||
def __repr__(self) -> str: | |||||
s = '' | |||||
s += 'One-hot GNN input layer\n' | |||||
s += ' # of node types: %d\n' % len(self.data.node_types) | |||||
for nt in self.data.node_types: | |||||
s += ' - %s (%d)\n' % (nt.name, nt.count) | |||||
return s.strip() | |||||
class DecagonLayer(Layer): | |||||
def __init__(self, | |||||
data: Data, | |||||
previous_layer: Layer, | |||||
output_dim: Union[int, List[int]], | |||||
keep_prob: float = 1., | |||||
rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x, | |||||
layer_activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu, | |||||
**kwargs): | |||||
if not isinstance(output_dim, list): | |||||
output_dim = [ output_dim ] * len(data.node_types) | |||||
super().__init__(output_dim, is_sparse=False, **kwargs) | |||||
self.data = data | |||||
self.previous_layer = previous_layer | |||||
self.input_dim = previous_layer.output_dim | |||||
self.keep_prob = keep_prob | |||||
self.rel_activation = rel_activation | |||||
self.layer_activation = layer_activation | |||||
self.next_layer_repr = None | |||||
self.build() | |||||
def build(self): | |||||
self.next_layer_repr = defaultdict(list) | |||||
for (nt_row, nt_col), relation_types in self.data.relation_types.items(): | |||||
row_convs = [] | |||||
col_convs = [] | |||||
for rel in relation_types: | |||||
conv = DropoutGraphConvActivation(self.input_dim[nt_col], | |||||
self.output_dim[nt_row], rel.adjacency_matrix, | |||||
self.keep_prob, self.rel_activation) | |||||
row_convs.append(conv) | |||||
if nt_row == nt_col: | |||||
continue | |||||
conv = DropoutGraphConvActivation(self.input_dim[nt_row], | |||||
self.output_dim[nt_col], rel.adjacency_matrix.transpose(0, 1), | |||||
self.keep_prob, self.rel_activation) | |||||
col_convs.append(conv) | |||||
self.next_layer_repr[nt_row].append((row_convs, nt_col)) | |||||
if nt_row == nt_col: | |||||
continue | |||||
self.next_layer_repr[nt_col].append((col_convs, nt_row)) | |||||
def __call__(self): | |||||
prev_layer_repr = self.previous_layer() | |||||
next_layer_repr = [ [] for _ in range(len(self.data.node_types)) ] | |||||
print('next_layer_repr:', next_layer_repr) | |||||
for i in range(len(self.data.node_types)): | |||||
for convs, neighbor_type in self.next_layer_repr[i]: | |||||
convs = [ conv(prev_layer_repr[neighbor_type]) \ | |||||
for conv in convs ] | |||||
convs = sum(convs) | |||||
convs = torch.nn.functional.normalize(convs, p=2, dim=1) | |||||
next_layer_repr[i].append(convs) | |||||
next_layer_repr[i] = sum(next_layer_repr[i]) | |||||
next_layer_repr[i] = self.layer_activation(next_layer_repr[i]) | |||||
print('next_layer_repr:', next_layer_repr) | |||||
return next_layer_repr |
@@ -0,0 +1,26 @@ | |||||
# | |||||
# This module implements a single layer of the Decagon | |||||
# model. This is going to be already quite complex, as | |||||
# we will be using all the graph convolutional building | |||||
# blocks. | |||||
# | |||||
# h_{i}^(k+1) = ϕ(∑_r ∑_{j∈N{r}^{i}} c_{r}^{ij} * \ | |||||
# W_{r}^(k) h_{j}^{k} + c_{r}^{i} h_{i}^(k)) | |||||
# | |||||
# N{r}^{i} - set of neighbors of node i under relation r | |||||
# W_{r}^(k) - relation-type specific weight matrix | |||||
# h_{i}^(k) - hidden state of node i in layer k | |||||
# h_{i}^(k)∈R^{d(k)} where d(k) is the dimensionality | |||||
# of the representation in k-th layer | |||||
# ϕ - activation function | |||||
# c_{r}^{ij} - normalization constants | |||||
# c_{r}^{ij} = 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) | |||||
# c_{r}^{i} - normalization constants | |||||
# c_{r}^{i} = 1/|N_{r}^{i}| | |||||
# | |||||
from .layer import * | |||||
from .input import * | |||||
from .convolve import * | |||||
from .decode import * |
@@ -0,0 +1,74 @@ | |||||
from .layer import Layer | |||||
import torch | |||||
from ..convolve import DropoutGraphConvActivation | |||||
from ..data import Data | |||||
from typing import List, \ | |||||
Union, \ | |||||
Callable | |||||
from collections import defaultdict | |||||
class DecagonLayer(Layer): | |||||
def __init__(self, | |||||
data: Data, | |||||
previous_layer: Layer, | |||||
output_dim: Union[int, List[int]], | |||||
keep_prob: float = 1., | |||||
rel_activation: Callable[[torch.Tensor], torch.Tensor] = lambda x: x, | |||||
layer_activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu, | |||||
**kwargs): | |||||
if not isinstance(output_dim, list): | |||||
output_dim = [ output_dim ] * len(data.node_types) | |||||
super().__init__(output_dim, is_sparse=False, **kwargs) | |||||
self.data = data | |||||
self.previous_layer = previous_layer | |||||
self.input_dim = previous_layer.output_dim | |||||
self.keep_prob = keep_prob | |||||
self.rel_activation = rel_activation | |||||
self.layer_activation = layer_activation | |||||
self.next_layer_repr = None | |||||
self.build() | |||||
def build(self): | |||||
self.next_layer_repr = defaultdict(list) | |||||
for (nt_row, nt_col), relation_types in self.data.relation_types.items(): | |||||
row_convs = [] | |||||
col_convs = [] | |||||
for rel in relation_types: | |||||
conv = DropoutGraphConvActivation(self.input_dim[nt_col], | |||||
self.output_dim[nt_row], rel.adjacency_matrix, | |||||
self.keep_prob, self.rel_activation) | |||||
row_convs.append(conv) | |||||
if nt_row == nt_col: | |||||
continue | |||||
conv = DropoutGraphConvActivation(self.input_dim[nt_row], | |||||
self.output_dim[nt_col], rel.adjacency_matrix.transpose(0, 1), | |||||
self.keep_prob, self.rel_activation) | |||||
col_convs.append(conv) | |||||
self.next_layer_repr[nt_row].append((row_convs, nt_col)) | |||||
if nt_row == nt_col: | |||||
continue | |||||
self.next_layer_repr[nt_col].append((col_convs, nt_row)) | |||||
def __call__(self): | |||||
prev_layer_repr = self.previous_layer() | |||||
next_layer_repr = [ [] for _ in range(len(self.data.node_types)) ] | |||||
print('next_layer_repr:', next_layer_repr) | |||||
for i in range(len(self.data.node_types)): | |||||
for convs, neighbor_type in self.next_layer_repr[i]: | |||||
convs = [ conv(prev_layer_repr[neighbor_type]) \ | |||||
for conv in convs ] | |||||
convs = sum(convs) | |||||
convs = torch.nn.functional.normalize(convs, p=2, dim=1) | |||||
next_layer_repr[i].append(convs) | |||||
next_layer_repr[i] = sum(next_layer_repr[i]) | |||||
next_layer_repr[i] = self.layer_activation(next_layer_repr[i]) | |||||
print('next_layer_repr:', next_layer_repr) | |||||
return next_layer_repr |
@@ -0,0 +1,65 @@ | |||||
from .layer import Layer | |||||
import torch | |||||
from typing import Union, \ | |||||
List | |||||
from ..data import Data | |||||
class InputLayer(Layer): | |||||
def __init__(self, data: Data, output_dim: Union[int, List[int]]= None, **kwargs) -> None: | |||||
output_dim = output_dim or \ | |||||
list(map(lambda a: a.count, data.node_types)) | |||||
if not isinstance(output_dim, list): | |||||
output_dim = [output_dim,] * len(data.node_types) | |||||
super().__init__(output_dim, is_sparse=False, **kwargs) | |||||
self.data = data | |||||
self.node_reps = None | |||||
self.build() | |||||
def build(self) -> None: | |||||
self.node_reps = [] | |||||
for i, nt in enumerate(self.data.node_types): | |||||
reps = torch.rand(nt.count, self.output_dim[i]) | |||||
reps = torch.nn.Parameter(reps) | |||||
self.register_parameter('node_reps[%d]' % i, reps) | |||||
self.node_reps.append(reps) | |||||
def forward(self) -> List[torch.nn.Parameter]: | |||||
return self.node_reps | |||||
def __repr__(self) -> str: | |||||
s = '' | |||||
s += 'GNN input layer with output_dim: %s\n' % self.output_dim | |||||
s += ' # of node types: %d\n' % len(self.data.node_types) | |||||
for nt in self.data.node_types: | |||||
s += ' - %s (%d)\n' % (nt.name, nt.count) | |||||
return s.strip() | |||||
class OneHotInputLayer(Layer): | |||||
def __init__(self, data: Data, **kwargs) -> None: | |||||
output_dim = [ a.count for a in data.node_types ] | |||||
super().__init__(output_dim, is_sparse=True, **kwargs) | |||||
self.data = data | |||||
self.node_reps = None | |||||
self.build() | |||||
def build(self) -> None: | |||||
self.node_reps = [] | |||||
for i, nt in enumerate(self.data.node_types): | |||||
reps = torch.eye(nt.count).to_sparse() | |||||
reps = torch.nn.Parameter(reps) | |||||
self.register_parameter('node_reps[%d]' % i, reps) | |||||
self.node_reps.append(reps) | |||||
def forward(self) -> List[torch.nn.Parameter]: | |||||
return self.node_reps | |||||
def __repr__(self) -> str: | |||||
s = '' | |||||
s += 'One-hot GNN input layer\n' | |||||
s += ' # of node types: %d\n' % len(self.data.node_types) | |||||
for nt in self.data.node_types: | |||||
s += ' - %s (%d)\n' % (nt.name, nt.count) | |||||
return s.strip() |
@@ -0,0 +1,13 @@ | |||||
import torch | |||||
from typing import List, \ | |||||
Union | |||||
class Layer(torch.nn.Module): | |||||
def __init__(self, | |||||
output_dim: Union[int, List[int]], | |||||
is_sparse: bool, | |||||
**kwargs) -> None: | |||||
super().__init__(**kwargs) | |||||
self.output_dim = output_dim | |||||
self.is_sparse = is_sparse |