IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Переглянути джерело

Fix for sparse_coo_tensor().

master
Stanislaw Adaszewski 4 роки тому
джерело
коміт
3391e15da1
3 змінених файлів з 15 додано та 3 видалено
  1. +2
    -1
      src/icosagon/dropout.py
  2. +12
    -2
      src/icosagon/normalize.py
  3. +1
    -0
      tests/icosagon/test_trainloop.py

+ 2
- 1
src/icosagon/dropout.py Переглянути файл

@@ -5,6 +5,7 @@
import torch
from .normalize import _sparse_coo_tensor
def dropout_sparse(x, keep_prob):
@@ -17,7 +18,7 @@ def dropout_sparse(x, keep_prob):
n = torch.floor(n).to(torch.bool)
i = i[:,n]
v = v[n]
x = torch.sparse_coo_tensor(i, v, size=size)
x = _sparse_coo_tensor(i, v, size=size)
return x * (1./keep_prob)


+ 12
- 2
src/icosagon/normalize.py Переглянути файл

@@ -35,6 +35,16 @@ def _check_2d(adj_mat):
raise ValueError('adj_mat must be a square matrix')
def _sparse_coo_tensor(indices, values, size):
ctor = { torch.float32: torch.sparse.FloatTensor,
torch.float32: torch.sparse.DoubleTensor,
torch.uint8: torch.sparse.ByteTensor,
torch.long: torch.sparse.LongTensor,
torch.int: torch.sparse.IntTensor,
torch.short: torch.sparse.ShortTensor }[values.dtype]
return ctor(indices, values, size)
def add_eye_sparse(adj_mat: torch.Tensor) -> torch.Tensor:
_check_tensor(adj_mat)
_check_sparse(adj_mat)
@@ -53,7 +63,7 @@ def add_eye_sparse(adj_mat: torch.Tensor) -> torch.Tensor:
indices = torch.cat((indices, eye_indices), 1)
values = torch.cat((values, eye_values), 0)
adj_mat = torch.sparse_coo_tensor(indices=indices, values=values, size=adj_mat.shape)
adj_mat = _sparse_coo_tensor(indices, values, adj_mat.shape)
return adj_mat
@@ -104,7 +114,7 @@ def norm_adj_mat_two_node_types_sparse(adj_mat: torch.Tensor) -> torch.Tensor:
degrees_col = torch.zeros(adj_mat.shape[1], device=adj_mat.device)
degrees_col = degrees_col.index_add(0, indices[1], values.to(degrees_col.dtype))
values = values.to(degrees_row.dtype) / torch.sqrt(degrees_row[indices[0]] * degrees_col[indices[1]])
adj_mat = torch.sparse_coo_tensor(indices=indices, values=values, size=adj_mat.shape)
adj_mat = _sparse_coo_tensor(indices, values, adj_mat.shape)
return adj_mat


+ 1
- 0
tests/icosagon/test_trainloop.py Переглянути файл

@@ -42,6 +42,7 @@ def test_train_loop_02():
def test_train_loop_03():
# pdb.set_trace()
if torch.cuda.device_count() == 0:
pytest.skip('CUDA required for this test')


Завантаження…
Відмінити
Зберегти