|
|
@@ -0,0 +1,62 @@ |
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
from icosagon.data import Data
|
|
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
from bisect import bisect_left
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
def index(a, x):
|
|
|
|
i = bisect_left(a, x)
|
|
|
|
if i != len(a) and a[i] == x:
|
|
|
|
return i
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
path = '/pstore/data/data_science/ref/decagon'
|
|
|
|
df_combo = pd.read_csv(os.path.join(path, 'bio-decagon-combo.csv'))
|
|
|
|
df_effcat = pd.read_csv(os.path.join(path, 'bio-decagon-effectcategories.csv'))
|
|
|
|
df_mono = pd.read_csv(os.path.join(path, 'bio-decagon-mono.csv'))
|
|
|
|
df_ppi = pd.read_csv(os.path.join(path, 'bio-decagon-ppi.csv'))
|
|
|
|
df_tgtall = pd.read_csv(os.path.join(path, 'bio-decagon-targets-all.csv'))
|
|
|
|
df_tgt = pd.read_csv(os.path.join(path, 'bio-decagon-targets.csv'))
|
|
|
|
lst = [ 'df_combo', 'df_effcat', 'df_mono', 'df_ppi', 'df_tgtall', 'df_tgt' ]
|
|
|
|
for nam in lst:
|
|
|
|
print(f'len({nam}): {len(locals()[nam])}')
|
|
|
|
print(f'{nam}.columns: {locals()[nam].columns}')
|
|
|
|
|
|
|
|
genes = set()
|
|
|
|
genes = genes.union(df_ppi['Gene 1']).union(df_ppi['Gene 2']) \
|
|
|
|
.union(df_tgtall['Gene']).union(df_tgt['Gene'])
|
|
|
|
genes = sorted(genes)
|
|
|
|
print('len(genes):', len(genes))
|
|
|
|
|
|
|
|
drugs = set()
|
|
|
|
drugs = drugs.union(df_combo['STITCH 1']).union(df_combo['STITCH 2']) \
|
|
|
|
.union(df_mono['STITCH']).union(df_tgtall['STITCH']).union(df_tgt['STITCH'])
|
|
|
|
drugs = sorted(drugs)
|
|
|
|
print('len(drugs):', len(drugs))
|
|
|
|
|
|
|
|
data = Data()
|
|
|
|
data.add_node_type('Gene', len(genes))
|
|
|
|
data.add_node_type('Drug', len(drugs))
|
|
|
|
|
|
|
|
print('Indexing rows...')
|
|
|
|
rows = [index(genes, g) for g in df_ppi['Gene 1']]
|
|
|
|
print('Indexing cols...')
|
|
|
|
cols = [index(genes, g) for g in df_ppi['Gene 2']]
|
|
|
|
indices = list(zip(rows, cols))
|
|
|
|
indices = torch.tensor(indices).transpose(0, 1)
|
|
|
|
values = torch.ones(len(rows))
|
|
|
|
print('indices.shape:', indices.shape, 'values.shape:', values.shape)
|
|
|
|
adj_mat = torch.sparse_coo_tensor(indices, values, size=(len(genes),) * 2)
|
|
|
|
adj_mat = (adj_mat + adj_mat.transpose(0, 1)) / 2
|
|
|
|
print('adj_mat created')
|
|
|
|
fam = data.add_relation_family('PPI', 0, 0, True)
|
|
|
|
rel = fam.add_relation_type('PPI', adj_mat)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|