IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Explorar el Código

Work on required vertices per layer.

master
Stanislaw Adaszewski hace 4 años
padre
commit
4ed6626e02
Se han modificado 6 ficheros con 1568 adiciones y 21 borrados
  1. +1463
    -0
      docs/required-vertices-per-layer.svg
  2. +3
    -2
      src/triacontagon/data.py
  3. +5
    -5
      src/triacontagon/decode.py
  4. +54
    -13
      src/triacontagon/model.py
  5. +3
    -1
      src/triacontagon/util.py
  6. +40
    -0
      tests/triacontagon/test_model.py

+ 1463
- 0
docs/required-vertices-per-layer.svg
La diferencia del archivo ha sido suprimido porque es demasiado grande
Ver fichero


+ 3
- 2
src/triacontagon/data.py Ver fichero

@@ -10,6 +10,7 @@ from typing import Callable, \
List
import types
from .util import _nonzero_sum
import torch
@dataclass
@@ -66,6 +67,6 @@ class Data(object):
if (vertex_type_row, vertex_type_column) in self.edge_types:
raise KeyError('Edge type for given combination of row and column already exists')
total_connectivity = _nonzero_sum(adjacency_matrices)
self.edges_types[vertex_type_row, vertex_type_column] = \
VertexType(name, vertex_type_row, vertex_type_column,
self.edge_types[vertex_type_row, vertex_type_column] = \
EdgeType(name, vertex_type_row, vertex_type_column,
adjacency_matrices, decoder_factory, total_connectivity)

+ 5
- 5
src/triacontagon/decode.py Ver fichero

@@ -11,7 +11,7 @@ from typing import Tuple, \
List
def dedicom_decoder(input_dim: int, num_relation_types: int) ->
def dedicom_decoder(input_dim: int, num_relation_types: int) -> \
Tuple[torch.Tensor, List[torch.Tensor]]:
global_interaction = init_glorot(input_dim, input_dim)
@@ -22,18 +22,18 @@ def dedicom_decoder(input_dim: int, num_relation_types: int) ->
return (global_interaction, local_variation)
def dist_mult_decoder(input_dim: int, num_relation_types: int) ->
def dist_mult_decoder(input_dim: int, num_relation_types: int) -> \
Tuple[torch.Tensor, List[torch.Tensor]]:
global_interaction = torch.eye(input_dim, input_dim)
local_variation = [
torch.diag(torch.flatten(init_glorot(input_dim, 1)))) \
torch.diag(torch.flatten(init_glorot(input_dim, 1))) \
for _ in range(num_relation_types)
]
return (global_interaction, local_variation)
def bilinear_decoder(input_dim: int, num_relation_types: int) ->
def bilinear_decoder(input_dim: int, num_relation_types: int) -> \
Tuple[torch.Tensor, List[torch.Tensor]]:
global_interaction = torch.eye(input_dim, input_dim)
@@ -44,7 +44,7 @@ def bilinear_decoder(input_dim: int, num_relation_types: int) ->
return (global_interaction, local_variation)
def inner_product_decoder(input_dim: int, num_relation_types: int) ->
def inner_product_decoder(input_dim: int, num_relation_types: int) -> \
Tuple[torch.Tensor, List[torch.Tensor]]:
global_interaction = torch.eye(input_dim, input_dim)


+ 54
- 13
src/triacontagon/model.py Ver fichero

@@ -6,7 +6,8 @@ from .weights import init_glorot
import types
from typing import List, \
Dict, \
Callable
Callable, \
Tuple
from .util import _sparse_coo_tensor
@@ -18,6 +19,46 @@ class TrainingBatch(object):
edges: torch.Tensor
def _per_layer_required_rows(data: Data, batch: TrainingBatch,
num_layers: int) -> List[List[EdgeType]]:
Q = [
( batch.vertex_type_row, batch.edges[:, 0] ),
( batch.vertex_type_column, batch.edges[:, 1] )
]
print('Q:', Q)
res = []
for _ in range(num_layers):
R = []
required_rows = [ [] for _ in range(len(data.vertex_types)) ]
for vertex_type, vertices in Q:
for et in data.edge_types.values():
if et.vertex_type_row == vertex_type:
required_rows[vertex_type].append(vertices)
indices = et.total_connectivity.indices()
mask = torch.zeros(et.total_connectivity.shape[0])
mask[vertices] = 1
mask = torch.nonzero(mask[indices[0]], as_tuple=True)[0]
R.append((et.vertex_type_column,
indices[1, mask]))
else:
pass # required_rows[et.vertex_type_row].append(torch.zeros(0))
required_rows = [ torch.unique(torch.cat(x)) \
if len(x) > 0 \
else None \
for x in required_rows ]
res.append(required_rows)
Q = R
return res
class Model(torch.nn.Module):
def __init__(self, data: Data, layer_dimensions: List[int],
keep_prob: float,
@@ -68,17 +109,16 @@ class Model(torch.nn.Module):
torch.nn.Parameter(local_variation)
])
def limit_adjacency_matrix_to_rows(self, adjacency_matrix: torch.Tensor,
rows: torch.Tensor) -> torch.Tensor:
adj_mat = adjacency_matrix.coalesce()
adj_mat = torch.index_select(adj_mat, 0, rows)
adj_mat = adj_mat.coalesce()
indices = adj_mat.indices()
indices[0] = rows
def convolve(self, batch: TrainingBatch) -> List[torch.Tensor]:
edges = []
cur_edges = batch.edges
for _ in range(len(self.layer_dimensions) - 1):
edges.append(cur_edges)
key = (batch.vertex_type_row, batch.vertex_type_column)
tot_conn = self.data.relation_types[key].total_connectivity
cur_edges = _edges_for_rows(tot_conn, cur_edges[:, 1])
adj_mat = _sparse_coo_tensor(indices, adj_mat.values(), adjacency_matrix.shape)
def temporary_adjacency_matrix(self, adjacency_matrix: torch.Tensor,
batch: TrainingBatch, total_connectivity: torch.Tensor) -> torch.Tensor:
@@ -90,12 +130,13 @@ class Model(torch.nn.Module):
columns = torch.nonzero(columns)
for i in range(len(self.layer_dimensions) - 1):
pass # columns =
# TODO: finish
columns =
return None
def temporary_adjacency_matrices(self, batch: TrainingBatch) ->
Dict[Tuple[int, int], List[List[torch.Tensor]]]:
def temporary_adjacency_matrices(self, batch: TrainingBatch) -> Dict[Tuple[int, int], List[List[torch.Tensor]]]:
col = batch.vertex_type_column
batch.edges[:, 1]


+ 3
- 1
src/triacontagon/util.py Ver fichero

@@ -41,7 +41,9 @@ def _nonzero_sum(adjacency_matrices: List[torch.Tensor]):
indices = res.indices()
res = _sparse_coo_tensor(indices,
torch.ones(indices.shape[1], dtype=torch.uint8))
torch.ones(indices.shape[1], dtype=torch.uint8),
adjacency_matrices[0].shape)
res = res.coalesce()
return res


+ 40
- 0
tests/triacontagon/test_model.py Ver fichero

@@ -0,0 +1,40 @@
from triacontagon.model import _per_layer_required_rows, \
TrainingBatch
from triacontagon.decode import dedicom_decoder
from triacontagon.data import Data
import torch
def test_per_layer_required_rows_01():
d = Data()
d.add_vertex_type('Gene', 4)
d.add_vertex_type('Drug', 5)
d.add_edge_type('Gene-Gene', 0, 0, [ torch.tensor([
[1, 0, 0, 1],
[0, 1, 1, 0],
[0, 0, 1, 0],
[0, 1, 0, 1]
]).to_sparse() ], dedicom_decoder)
d.add_edge_type('Gene-Drug', 0, 1, [ torch.tensor([
[0, 1, 0, 0, 1],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 1],
[0, 0, 1, 1, 0]
]).to_sparse() ], dedicom_decoder)
d.add_edge_type('Drug-Drug', 1, 1, [ torch.tensor([
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]
]).to_sparse() ], dedicom_decoder)
batch = TrainingBatch(0, 1, 0, torch.tensor([
[0, 1]
]))
res = _per_layer_required_rows(d, batch, 5)
print('res:', res)

Cargando…
Cancelar
Guardar