IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Explorar el Código

Add test_normalize.

master
Stanislaw Adaszewski hace 4 años
padre
commit
7e83fed37b
Se han modificado 1 ficheros con 185 adiciones y 0 borrados
  1. +185
    -0
      tests/triacontagon/test_normalize.py

+ 185
- 0
tests/triacontagon/test_normalize.py Ver fichero

@@ -0,0 +1,185 @@
from triacontagon.normalize import add_eye_sparse, \
norm_adj_mat_one_node_type_sparse, \
norm_adj_mat_one_node_type_dense, \
norm_adj_mat_one_node_type, \
norm_adj_mat_two_node_types_sparse, \
norm_adj_mat_two_node_types_dense, \
norm_adj_mat_two_node_types
import decagon_pytorch.normalize
import torch
import pytest
import numpy as np
from math import sqrt
def test_add_eye_sparse_01():
adj_mat_dense = torch.rand((10, 10))
adj_mat_sparse = adj_mat_dense.to_sparse()
adj_mat_dense += torch.eye(10)
adj_mat_sparse = add_eye_sparse(adj_mat_sparse)
assert torch.all(adj_mat_sparse.to_dense() == adj_mat_dense)
def test_add_eye_sparse_02():
adj_mat_dense = torch.rand((10, 20))
adj_mat_sparse = adj_mat_dense.to_sparse()
with pytest.raises(ValueError):
_ = add_eye_sparse(adj_mat_sparse)
def test_add_eye_sparse_03():
adj_mat_dense = torch.rand((10, 10))
with pytest.raises(ValueError):
_ = add_eye_sparse(adj_mat_dense)
def test_add_eye_sparse_04():
adj_mat_dense = np.random.rand(10, 10)
with pytest.raises(ValueError):
_ = add_eye_sparse(adj_mat_dense)
def test_norm_adj_mat_one_node_type_sparse_01():
adj_mat = torch.rand((10, 10))
adj_mat = (adj_mat > .5).to(torch.float32)
adj_mat = adj_mat.to_sparse()
_ = norm_adj_mat_one_node_type_sparse(adj_mat)
def test_norm_adj_mat_one_node_type_sparse_02():
adj_mat_dense = torch.rand((10, 10))
adj_mat_dense = (adj_mat_dense > .5).to(torch.float32)
adj_mat_sparse = adj_mat_dense.to_sparse()
adj_mat_sparse = norm_adj_mat_one_node_type_sparse(adj_mat_sparse)
adj_mat_dense = norm_adj_mat_one_node_type_dense(adj_mat_dense)
assert torch.all(adj_mat_sparse.to_dense() - adj_mat_dense < 0.000001)
def test_norm_adj_mat_one_node_type_dense_01():
adj_mat = torch.rand((10, 10))
adj_mat = (adj_mat > .5)
_ = norm_adj_mat_one_node_type_dense(adj_mat)
def test_norm_adj_mat_one_node_type_dense_02():
adj_mat = torch.tensor([
[0, 1, 1, 0], # 3
[1, 0, 1, 0], # 3
[1, 1, 0, 1], # 4
[0, 0, 1, 0] # 2
# 3 3 4 2
])
expect_denom = np.array([
[ 3, 3, sqrt(3)*2, sqrt(6) ],
[ 3, 3, sqrt(3)*2, sqrt(6) ],
[ sqrt(3)*2, sqrt(3)*2, 4, sqrt(2)*2 ],
[ sqrt(6), sqrt(6), sqrt(2)*2, 2 ]
], dtype=np.float32)
expect = (adj_mat.detach().cpu().numpy().astype(np.float32) + np.eye(4)) / expect_denom
# expect = np.array([
# [1/3, 1/3, 1/3, 0],
# [1/3, 1/3, 1/3, 0],
# [1/4, 1/4, 1/4, 1/4],
# [0, 0, 1/2, 1/2]
# ], dtype=np.float32)
res = decagon_pytorch.normalize.norm_adj_mat_one_node_type(adj_mat)
res = res.todense().astype(np.float32)
print('res:', res)
print('expect:', expect)
assert np.all(res - expect < 0.000001)
def test_norm_adj_mat_one_node_type_dense_03():
# adj_mat = torch.rand((10, 10))
adj_mat = torch.tensor([
[0, 1, 1, 0, 0],
[1, 0, 1, 0, 1],
[1, 1, 0, .5, .5],
[0, 0, .5, 0, 1],
[0, 1, .5, 1, 0]
])
# adj_mat = (adj_mat > .5)
adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_one_node_type(adj_mat)
adj_mat_ico = norm_adj_mat_one_node_type_dense(adj_mat)
adj_mat_dec = adj_mat_dec.todense()
adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
print('adj_mat_dec:', adj_mat_dec)
print('adj_mat_ico:', adj_mat_ico)
assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)
def test_norm_adj_mat_two_node_types_sparse_01():
adj_mat = torch.rand((10, 20))
adj_mat = (adj_mat > .5)
adj_mat = adj_mat.to_sparse()
_ = norm_adj_mat_two_node_types_sparse(adj_mat)
def test_norm_adj_mat_two_node_types_sparse_02():
adj_mat_dense = torch.rand((10, 20))
adj_mat_dense = (adj_mat_dense > .5)
adj_mat_sparse = adj_mat_dense.to_sparse()
adj_mat_sparse = norm_adj_mat_two_node_types_sparse(adj_mat_sparse)
adj_mat_dense = norm_adj_mat_two_node_types_dense(adj_mat_dense)
assert torch.all(adj_mat_sparse.to_dense() - adj_mat_dense < 0.000001)
def test_norm_adj_mat_two_node_types_dense_01():
adj_mat = torch.rand((10, 20))
adj_mat = (adj_mat > .5)
_ = norm_adj_mat_two_node_types_dense(adj_mat)
def test_norm_adj_mat_two_node_types_dense_02():
adj_mat = torch.tensor([
[0, 1, 1, 0], # 2
[1, 0, 1, 0], # 2
[1, 1, 0, 1], # 3
[0, 0, 1, 0] # 1
# 2 2 3 1
])
expect_denom = np.array([
[ 2, 2, sqrt(6), sqrt(2) ],
[ 2, 2, sqrt(6), sqrt(2) ],
[ sqrt(6), sqrt(6), 3, sqrt(3) ],
[ sqrt(2), sqrt(2), sqrt(3), 1 ]
], dtype=np.float32)
expect = adj_mat.detach().cpu().numpy().astype(np.float32) / expect_denom
res = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
res = res.todense().astype(np.float32)
print('res:', res)
print('expect:', expect)
assert np.all(res - expect < 0.000001)
def test_norm_adj_mat_two_node_types_dense_03():
adj_mat = torch.tensor([
[0, 1, 1, 0, 0],
[1, 0, 1, 0, 1],
[1, 1, 0, .5, .5],
[0, 0, .5, 0, 1],
[0, 1, .5, 1, 0]
])
adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
adj_mat_ico = norm_adj_mat_two_node_types_dense(adj_mat)
adj_mat_dec = adj_mat_dec.todense()
adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
print('adj_mat_dec:', adj_mat_dec)
print('adj_mat_ico:', adj_mat_ico)
assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)
def test_norm_adj_mat_two_node_types_dense_04():
adj_mat = torch.rand((10, 20))
adj_mat_dec = decagon_pytorch.normalize.norm_adj_mat_two_node_types(adj_mat)
adj_mat_ico = norm_adj_mat_two_node_types_dense(adj_mat)
adj_mat_dec = adj_mat_dec.todense()
adj_mat_ico = adj_mat_ico.detach().cpu().numpy()
print('adj_mat_dec:', adj_mat_dec)
print('adj_mat_ico:', adj_mat_ico)
assert np.all(adj_mat_dec - adj_mat_ico < 0.000001)

Cargando…
Cancelar
Guardar