IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Selaa lähdekoodia

Add tests for convlayer.

master
Stanislaw Adaszewski 4 vuotta sitten
vanhempi
commit
a305dc70aa
4 muutettua tiedostoa jossa 179 lisäystä ja 6 poistoa
  1. +1
    -1
      src/decagon_pytorch/convolve/universal.py
  2. +7
    -4
      src/icosagon/convlayer.py
  3. +4
    -1
      src/icosagon/input.py
  4. +167
    -0
      tests/icosagon/test_convlayer.py

+ 1
- 1
src/decagon_pytorch/convolve/universal.py Näytä tiedosto

@@ -73,7 +73,7 @@ class MultiDGCA(torch.nn.Module):
raise ValueError('input_dim must have the same length as adjacency_matrices')
self.dgca = []
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices):
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation))
self.dgca.append(DropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation))
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
if not isinstance(x, list):


+ 7
- 4
src/icosagon/convlayer.py Näytä tiedosto

@@ -30,8 +30,11 @@ class DecagonLayer(torch.nn.Module):
if not isinstance(input_dim, list):
raise ValueError('input_dim must be a list')
if not output_dim:
raise ValueError('output_dim must be specified')
if not isinstance(output_dim, list):
raise ValueError('output_dim must be a list')
output_dim = [output_dim] * len(data.node_types)
if not isinstance(data, Data) and not isinstance(data, PreparedData):
raise ValueError('data must be of type Data or PreparedData')
@@ -87,8 +90,8 @@ class DecagonLayer(torch.nn.Module):
for conv in convolutions.convolutions ]
repr_ = sum(repr_)
repr_ = torch.nn.functional.normalize(repr_, p=2, dim=1)
next_layer_repr[i].append(repr_)
next_layer_repr[i] = sum(next_layer_repr[i])
next_layer_repr[i] = self.layer_activation(next_layer_repr[i])
next_layer_repr[node_type_row].append(repr_)
next_layer_repr[node_type_row] = sum(next_layer_repr[node_type_row])
next_layer_repr[node_type_row] = self.layer_activation(next_layer_repr[node_type_row])
return next_layer_repr

+ 4
- 1
src/icosagon/input.py Näytä tiedosto

@@ -11,9 +11,12 @@ from .data import Data
class InputLayer(torch.nn.Module):
def __init__(self, data: Data, output_dim: Union[int, List[int]] = None, **kwargs) -> None:
def __init__(self, data: Data, output_dim: Union[int, List[int]] = None,
**kwargs) -> None:
output_dim = output_dim or \
list(map(lambda a: a.count, data.node_types))
if not isinstance(output_dim, list):
output_dim = [output_dim,] * len(data.node_types)


+ 167
- 0
tests/icosagon/test_convlayer.py Näytä tiedosto

@@ -0,0 +1,167 @@
from icosagon.input import InputLayer, \
OneHotInputLayer
from icosagon.convlayer import DecagonLayer, \
Convolutions
from icosagon.data import Data
import torch
import pytest
from icosagon.convolve import DropoutGraphConvActivation
from decagon_pytorch.convolve import MultiDGCA
import decagon_pytorch.convolve
def _some_data_with_interactions():
d = Data()
d.add_node_type('Gene', 1000)
d.add_node_type('Drug', 100)
d.add_relation_type('Target', 1, 0,
torch.rand((100, 1000), dtype=torch.float32).round())
d.add_relation_type('Interaction', 0, 0,
torch.rand((1000, 1000), dtype=torch.float32).round())
d.add_relation_type('Side Effect: Nausea', 1, 1,
torch.rand((100, 100), dtype=torch.float32).round())
d.add_relation_type('Side Effect: Infertility', 1, 1,
torch.rand((100, 100), dtype=torch.float32).round())
d.add_relation_type('Side Effect: Death', 1, 1,
torch.rand((100, 100), dtype=torch.float32).round())
return d
def test_decagon_layer_01():
d = _some_data_with_interactions()
in_layer = InputLayer(d)
d_layer = DecagonLayer(in_layer.output_dim, 32, d)
seq = torch.nn.Sequential(in_layer, d_layer)
_ = seq(None) # dummy call
def test_decagon_layer_02():
d = _some_data_with_interactions()
in_layer = OneHotInputLayer(d)
d_layer = DecagonLayer(in_layer.output_dim, 32, d)
seq = torch.nn.Sequential(in_layer, d_layer)
_ = seq(None) # dummy call
def test_decagon_layer_03():
d = _some_data_with_interactions()
in_layer = OneHotInputLayer(d)
d_layer = DecagonLayer(in_layer.output_dim, 32, d)
assert d_layer.input_dim == [ 1000, 100 ]
assert d_layer.output_dim == [ 32, 32 ]
assert d_layer.data == d
assert d_layer.keep_prob == 1.
assert d_layer.rel_activation(0.5) == 0.5
x = torch.tensor([-1, 0, 0.5, 1])
assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
assert not d_layer.is_sparse
assert len(d_layer.next_layer_repr) == 2
for i in range(2):
assert len(d_layer.next_layer_repr[i]) == 2
assert isinstance(d_layer.next_layer_repr[i], list)
assert isinstance(d_layer.next_layer_repr[i][0], Convolutions)
assert isinstance(d_layer.next_layer_repr[i][0].node_type_column, int)
assert isinstance(d_layer.next_layer_repr[i][0].convolutions, list)
assert all([
isinstance(dgca, DropoutGraphConvActivation) \
for dgca in d_layer.next_layer_repr[i][0].convolutions
])
assert all([
dgca.output_dim == 32 \
for dgca in d_layer.next_layer_repr[i][0].convolutions
])
def test_decagon_layer_04():
# check if it is equivalent to MultiDGCA, as it should be
d = Data()
d.add_node_type('Dummy', 100)
d.add_relation_type('Dummy Relation', 0, 0,
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
in_layer = OneHotInputLayer(d)
multi_dgca = MultiDGCA([10], 32,
[r.adjacency_matrix for r in d.relation_types[0][0]],
keep_prob=1., activation=lambda x: x)
d_layer = DecagonLayer(in_layer.output_dim, 32, d,
keep_prob=1., rel_activation=lambda x: x,
layer_activation=lambda x: x)
assert isinstance(d_layer.next_layer_repr[0][0].convolutions[0],
DropoutGraphConvActivation)
weight = d_layer.next_layer_repr[0][0].convolutions[0].graph_conv.weight
assert isinstance(weight, torch.Tensor)
assert len(multi_dgca.dgca) == 1
assert isinstance(multi_dgca.dgca[0],
decagon_pytorch.convolve.DropoutGraphConvActivation)
multi_dgca.dgca[0].graph_conv.weight = weight
seq = torch.nn.Sequential(in_layer, d_layer)
out_d_layer = seq(None)
out_multi_dgca = multi_dgca(in_layer(None))
assert isinstance(out_d_layer, list)
assert len(out_d_layer) == 1
assert torch.all(out_d_layer[0] == out_multi_dgca)
def test_decagon_layer_05():
# check if it is equivalent to MultiDGCA, as it should be
# this time for two relations, same edge type
d = Data()
d.add_node_type('Dummy', 100)
d.add_relation_type('Dummy Relation 1', 0, 0,
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
d.add_relation_type('Dummy Relation 2', 0, 0,
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
in_layer = OneHotInputLayer(d)
multi_dgca = MultiDGCA([100, 100], 32,
[r.adjacency_matrix for r in d.relation_types[0][0]],
keep_prob=1., activation=lambda x: x)
d_layer = DecagonLayer(in_layer.output_dim, output_dim=32, data=d,
keep_prob=1., rel_activation=lambda x: x,
layer_activation=lambda x: x)
assert all([
isinstance(dgca, DropoutGraphConvActivation) \
for dgca in d_layer.next_layer_repr[0][0].convolutions
])
weight = [ dgca.graph_conv.weight \
for dgca in d_layer.next_layer_repr[0][0].convolutions ]
assert all([
isinstance(w, torch.Tensor) \
for w in weight
])
assert len(multi_dgca.dgca) == 2
for i in range(2):
assert isinstance(multi_dgca.dgca[i],
decagon_pytorch.convolve.DropoutGraphConvActivation)
for i in range(2):
multi_dgca.dgca[i].graph_conv.weight = weight[i]
seq = torch.nn.Sequential(in_layer, d_layer)
out_d_layer = seq(None)
x = in_layer(None)
out_multi_dgca = multi_dgca([ x[0], x[0] ])
assert isinstance(out_d_layer, list)
assert len(out_d_layer) == 1
assert torch.all(out_d_layer[0] == out_multi_dgca)

Loading…
Peruuta
Tallenna