IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Sfoglia il codice sorgente

Add some debug output for profiling, the bottleneck is in DecodeLayer but also comes generally from computing always all nodes.

master
Stanislaw Adaszewski 4 anni fa
parent
commit
a5b8701a0d
4 ha cambiato i file con 33 aggiunte e 0 eliminazioni
  1. +3
    -0
      src/icosagon/convlayer.py
  2. +5
    -0
      src/icosagon/declayer.py
  3. +15
    -0
      src/icosagon/trainloop.py
  4. +10
    -0
      tests/icosagon/test_trainloop.py

+ 3
- 0
src/icosagon/convlayer.py Vedi File

@@ -7,6 +7,7 @@ from typing import List, \
Callable
from collections import defaultdict
from dataclasses import dataclass
import time
class Convolutions(torch.nn.Module):
@@ -104,6 +105,7 @@ class DecagonLayer(torch.nn.Module):
self.build_family(fam)
def __call__(self, prev_layer_repr):
t = time.time()
next_layer_repr = [ [] for _ in range(len(self.data.node_types)) ]
n = len(self.data.node_types)
@@ -120,4 +122,5 @@ class DecagonLayer(torch.nn.Module):
next_layer_repr[node_type_row] = sum(next_layer_repr[node_type_row])
next_layer_repr[node_type_row] = self.layer_activation(next_layer_repr[node_type_row])
print('DecagonLayer.forward() took', time.time() - t)
return next_layer_repr

+ 5
- 0
src/icosagon/declayer.py Vedi File

@@ -16,6 +16,7 @@ from typing import Type, \
Tuple
from .decode import DEDICOMDecoder
from dataclasses import dataclass
import time
@dataclass
@@ -75,6 +76,7 @@ class DecodeLayer(torch.nn.Module):
self.decoders.append(dec)
def _get_tvt(self, r, edge_list_attr_names, row, column, k, last_layer_repr, dec):
start_time = time.time()
pred = []
for p in edge_list_attr_names:
tvt = []
@@ -86,9 +88,11 @@ class DecodeLayer(torch.nn.Module):
tvt.append(dec(inputs_row, inputs_column, k))
tvt = TrainValTest(*tvt)
pred.append(tvt)
print('DecodeLayer._get_tvt() took:', time.time() - start_time)
return pred
def forward(self, last_layer_repr: List[torch.Tensor]) -> List[List[torch.Tensor]]:
t = time.time()
res = []
for i, fam in enumerate(self.data.relation_families):
fam_pred = []
@@ -103,4 +107,5 @@ class DecodeLayer(torch.nn.Module):
fam_pred = RelationFamilyPredictions(fam_pred)
res.append(fam_pred)
res = Predictions(res)
print('DecodeLayer.forward() took', time.time() - t)
return res

+ 15
- 0
src/icosagon/trainloop.py Vedi File

@@ -5,6 +5,7 @@ from .batch import PredictionsBatch, \
gather_batch_indices
from typing import Callable
from types import FunctionType
import time
class TrainLoop(object):
@@ -54,9 +55,15 @@ class TrainLoop(object):
loss_sum = 0
for i, indices in enumerate(batch):
print('%.2f%% (%d/%d)' % (i * batch.batch_size * 100 / batch.total_edge_count, i * batch.batch_size, batch.total_edge_count))
t = time.time()
self.opt.zero_grad()
print('zero_grad() took:', time.time() - t)
t = time.time()
pred = self.model(None)
print('model() took:', time.time() - t)
t = time.time()
pred = flatten_predictions(pred)
print('flatten_predictions() took:', time.time() - t)
# batch = PredictionsBatch(pred, batch_size=self.batch_size, shuffle=True)
# seed = torch.rand(1).item()
# rng_state = torch.get_rng_state()
@@ -66,10 +73,18 @@ class TrainLoop(object):
#for k in range(i):
#_ = next(it)
#(input, target) = next(it)
t = time.time()
(input, target) = gather_batch_indices(pred, indices)
print('gather_batch_indices() took:', time.time() - t)
t = time.time()
loss = self.loss(input, target)
print('loss() took:', time.time() - t)
t = time.time()
loss.backward()
print('backward() took:', time.time() - t)
t = time.time()
self.opt.step()
print('step() took:', time.time() - t)
loss_sum += loss.detach().cpu().item()
return loss_sum


+ 10
- 0
tests/icosagon/test_trainloop.py Vedi File

@@ -6,6 +6,7 @@ from icosagon.trainloop import TrainLoop
import torch
import pytest
import pdb
import time
def test_train_loop_01():
@@ -69,3 +70,12 @@ def test_train_loop_03():
loop = TrainLoop(m)
loop.run_epoch()
def test_timing_01():
adj_mat = (torch.rand(2000, 2000) < .001).to(torch.float32).to_sparse()
rep = torch.eye(2000).requires_grad_(True)
t = time.time()
for _ in range(1300):
_ = torch.sparse.mm(adj_mat, rep)
print('Elapsed:', time.time() - t)

Loading…
Annulla
Salva