IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
ソースを参照

Test for an approach to pairwise (rather than cartesian product) link predition.

master
Stanislaw Adaszewski 4年前
コミット
b08ae2e160
2個のファイルの変更107行の追加1行の削除
  1. +1
    -1
      src/decagon_pytorch/__init__.py
  2. +106
    -0
      tests/decagon_pytorch/test_decode_dims.py

+ 1
- 1
src/decagon_pytorch/__init__.py ファイルの表示

@@ -6,4 +6,4 @@
from .weights import *
from .convolve import *
from .model import *
from .layer import *
from .layer.decode import *

+ 106
- 0
tests/decagon_pytorch/test_decode_dims.py ファイルの表示

@@ -0,0 +1,106 @@
from decagon_pytorch.decode import DEDICOMDecoder, \
DistMultDecoder, \
BilinearDecoder, \
InnerProductDecoder
import torch
def _common(decoder_class):
decoder = decoder_class(input_dim=10, num_relation_types=1)
inputs = torch.rand((20, 10))
pred = decoder(inputs, inputs)
assert isinstance(pred, list)
assert len(pred) == 1
assert isinstance(pred[0], torch.Tensor)
assert pred[0].shape == (20, 20)
def test_dedicom_decoder():
_common(DEDICOMDecoder)
def test_dist_mult_decoder():
_common(DistMultDecoder)
def test_bilinear_decoder():
_common(BilinearDecoder)
def test_inner_product_decoder():
_common(InnerProductDecoder)
def test_batch_matrix_multiplication():
input_dim = 10
inputs = torch.rand((20, 10))
decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
out_dec = decoder(inputs, inputs)
relation = decoder.local_variation[0]
global_interaction = decoder.global_interaction
act = decoder.activation
relation = torch.diag(relation)
product1 = torch.mm(inputs, relation)
product2 = torch.mm(product1, global_interaction)
product3 = torch.mm(product2, relation)
rec = torch.mm(product3, torch.transpose(inputs, 0, 1))
rec = act(rec)
print('rec:', rec)
print('out_dec:', out_dec)
assert torch.all(rec == out_dec[0])
def test_single_prediction_01():
input_dim = 10
inputs = torch.rand((20, 10))
decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
dec_all = decoder(inputs, inputs)
dec_one = decoder(inputs[0:1], inputs[0:1])
assert torch.abs(dec_all[0][0, 0] - dec_one[0][0, 0]) < 0.000001
def test_single_prediction_02():
input_dim = 10
inputs = torch.rand((20, 10))
decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
dec_all = decoder(inputs, inputs)
dec_one = decoder(inputs[0:1], inputs[1:2])
assert torch.abs(dec_all[0][0, 1] - dec_one[0][0, 0]) < 0.000001
assert dec_one[0].shape == (1, 1)
def test_pairwise_prediction():
n_nodes = 20
input_dim = 10
inputs_row = torch.rand((n_nodes, input_dim))
inputs_col = torch.rand((n_nodes, input_dim))
decoder = DEDICOMDecoder(input_dim=input_dim, num_relation_types=1)
dec_all = decoder(inputs_row, inputs_col)
relation = torch.diag(decoder.local_variation[0])
global_interaction = decoder.global_interaction
act = decoder.activation
product1 = torch.mm(inputs_row, relation)
product2 = torch.mm(product1, global_interaction)
product3 = torch.mm(product2, relation)
rec = torch.bmm(product3.view(product3.shape[0], 1, product3.shape[1]),
inputs_col.view(inputs_col.shape[0], inputs_col.shape[1], 1))
assert rec.shape == (n_nodes, 1, 1)
rec = torch.flatten(rec)
rec = act(rec)
assert torch.all(torch.abs(rec - torch.diag(dec_all[0])) < 0.000001)

読み込み中…
キャンセル
保存