|
|
@@ -5,12 +5,14 @@ |
|
|
|
|
|
|
|
|
|
|
|
from icosagon.input import OneHotInputLayer
|
|
|
|
from icosagon.convolve import DropoutGraphConvActivation
|
|
|
|
from icosagon.convlayer import DecagonLayer
|
|
|
|
from icosagon.declayer import DecodeLayer, \
|
|
|
|
Predictions, \
|
|
|
|
RelationFamilyPredictions, \
|
|
|
|
RelationPredictions
|
|
|
|
from icosagon.decode import DEDICOMDecoder
|
|
|
|
from icosagon.decode import DEDICOMDecoder, \
|
|
|
|
InnerProductDecoder
|
|
|
|
from icosagon.data import Data
|
|
|
|
from icosagon.trainprep import prepare_training, \
|
|
|
|
TrainValTest
|
|
|
@@ -116,3 +118,109 @@ def test_decode_layer_04(): |
|
|
|
|
|
|
|
assert isinstance(pred, Predictions)
|
|
|
|
assert len(pred.relation_families) == 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_decode_layer_05():
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Dummy', 10)
|
|
|
|
mat = torch.rand((10, 10))
|
|
|
|
mat = (mat + mat.transpose(0, 1)) / 2
|
|
|
|
mat = mat.round()
|
|
|
|
fam = d.add_relation_family('Dummy-Dummy', 0, 0, True,
|
|
|
|
decoder_class=InnerProductDecoder)
|
|
|
|
fam.add_relation_type('Dummy Rel', mat.to_sparse())
|
|
|
|
prep_d = prepare_training(d, TrainValTest(1., 0., 0.))
|
|
|
|
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
conv_layer = DecagonLayer(in_layer.output_dim, 32, prep_d,
|
|
|
|
rel_activation=lambda x: x, layer_activation=lambda x: x)
|
|
|
|
dec_layer = DecodeLayer(conv_layer.output_dim, prep_d,
|
|
|
|
keep_prob=1., activation=lambda x: x)
|
|
|
|
seq = torch.nn.Sequential(in_layer, conv_layer, dec_layer)
|
|
|
|
|
|
|
|
pred = seq(None)
|
|
|
|
rel_pred = pred.relation_families[0].relation_types[0]
|
|
|
|
|
|
|
|
for edge_type in ['edges_pos', 'edges_neg', 'edges_back_pos', 'edges_back_neg']:
|
|
|
|
edge_pred = getattr(rel_pred, edge_type)
|
|
|
|
assert isinstance(edge_pred, TrainValTest)
|
|
|
|
for part_type in ['train', 'val', 'test']:
|
|
|
|
part_pred = getattr(edge_pred, part_type)
|
|
|
|
assert isinstance(part_pred, torch.Tensor)
|
|
|
|
assert len(part_pred.shape) == 1
|
|
|
|
print(edge_type, part_type, part_pred.shape)
|
|
|
|
if (edge_type, part_type) not in [('edges_pos', 'train'), ('edges_neg', 'train')]:
|
|
|
|
assert part_pred.shape[0] == 0
|
|
|
|
else:
|
|
|
|
assert part_pred.shape[0] > 0
|
|
|
|
|
|
|
|
prep_rel = prep_d.relation_families[0].relation_types[0]
|
|
|
|
assert len(rel_pred.edges_pos.train) == len(prep_rel.edges_pos.train)
|
|
|
|
assert len(rel_pred.edges_neg.train) == len(prep_rel.edges_neg.train)
|
|
|
|
|
|
|
|
assert len(prep_rel.edges_pos.train) == torch.sum(mat)
|
|
|
|
|
|
|
|
# print('Predictions for positive edges:')
|
|
|
|
# print(rel_pred.edges_pos.train)
|
|
|
|
# print('Predictions for negative edges:')
|
|
|
|
# print(rel_pred.edges_neg.train)
|
|
|
|
|
|
|
|
repr_in = in_layer(None)
|
|
|
|
assert isinstance(repr_in, list)
|
|
|
|
assert len(repr_in) == 1
|
|
|
|
assert isinstance(repr_in[0], torch.Tensor)
|
|
|
|
assert torch.all(repr_in[0].to_dense() == torch.eye(10))
|
|
|
|
|
|
|
|
assert len(conv_layer.next_layer_repr[0]) == 1
|
|
|
|
assert len(conv_layer.next_layer_repr[0][0].convolutions) == 1
|
|
|
|
assert conv_layer.rel_activation(0) == 0
|
|
|
|
assert conv_layer.rel_activation(1) == 1
|
|
|
|
assert conv_layer.rel_activation(-1) == -1
|
|
|
|
assert conv_layer.layer_activation(0) == 0
|
|
|
|
assert conv_layer.layer_activation(1) == 1
|
|
|
|
assert conv_layer.layer_activation(-1) == -1
|
|
|
|
|
|
|
|
graph_conv = conv_layer.next_layer_repr[0][0].convolutions[0]
|
|
|
|
assert isinstance(graph_conv, DropoutGraphConvActivation)
|
|
|
|
assert graph_conv.activation(0) == 0
|
|
|
|
assert graph_conv.activation(1) == 1
|
|
|
|
assert graph_conv.activation(-1) == -1
|
|
|
|
weight = graph_conv.graph_conv.weight
|
|
|
|
adj_mat = prep_d.relation_families[0].relation_types[0].adjacency_matrix
|
|
|
|
repr_conv = torch.sparse.mm(repr_in[0], weight)
|
|
|
|
repr_conv = torch.mm(adj_mat, repr_conv)
|
|
|
|
repr_conv = torch.nn.functional.normalize(repr_conv, p=2, dim=1)
|
|
|
|
repr_conv_expect = conv_layer(repr_in)[0]
|
|
|
|
print('repr_conv:\n', repr_conv)
|
|
|
|
# print(repr_conv_expect)
|
|
|
|
assert torch.all(repr_conv == repr_conv_expect)
|
|
|
|
assert repr_conv.shape[1] == 32
|
|
|
|
|
|
|
|
dec = InnerProductDecoder(32, 1, keep_prob=1., activation=lambda x: x)
|
|
|
|
x, y = torch.meshgrid(torch.arange(0, 10), torch.arange(0, 10))
|
|
|
|
x = x.flatten()
|
|
|
|
y = y.flatten()
|
|
|
|
repr_dec_expect = dec(repr_conv[x], repr_conv[y], 0)
|
|
|
|
repr_dec_expect = repr_dec_expect.view(10, 10)
|
|
|
|
|
|
|
|
|
|
|
|
repr_dec = torch.mm(repr_conv, torch.transpose(repr_conv, 0, 1))
|
|
|
|
# repr_dec = torch.flatten(repr_dec)
|
|
|
|
# repr_dec -= torch.eye(10)
|
|
|
|
#repr_dec_expect = torch.zeros((10, 10))
|
|
|
|
#x = prep_d.relation_families[0].relation_types[0].edges_pos.train
|
|
|
|
#repr_dec_expect[x[:, 0], x[:, 1]] = pred.relation_families[0].relation_types[0].edges_pos.train
|
|
|
|
#x = prep_d.relation_families[0].relation_types[0].edges_neg.train
|
|
|
|
#repr_dec_expect[x[:, 0], x[:, 1]] = pred.relation_families[0].relation_types[0].edges_neg.train
|
|
|
|
print(repr_dec)
|
|
|
|
print(repr_dec_expect)
|
|
|
|
assert torch.all(torch.abs(repr_dec - repr_dec_expect) < 0.000001)
|
|
|
|
|
|
|
|
#print(prep_rel.edges_pos.train)
|
|
|
|
#print(prep_rel.edges_neg.train)
|
|
|
|
|
|
|
|
# assert isinstance(edge_pred.train)
|
|
|
|
# assert isinstance(rel_pred.edges_pos, TrainValTest)
|
|
|
|
# assert isinstance(rel_pred.edges_neg, TrainValTest)
|
|
|
|
# assert isinstance(rel_pred.edges_back_pos, TrainValTest)
|
|
|
|
# assert isinstance(rel_pred.edges_back_neg, TrainValTest)
|