|
|
@@ -1,241 +0,0 @@ |
|
|
|
from decagon_pytorch.layer import InputLayer, \
|
|
|
|
OneHotInputLayer, \
|
|
|
|
DecagonLayer
|
|
|
|
from decagon_pytorch.data import Data
|
|
|
|
import torch
|
|
|
|
import pytest
|
|
|
|
from decagon_pytorch.convolve import SparseDropoutGraphConvActivation, \
|
|
|
|
SparseMultiDGCA, \
|
|
|
|
DropoutGraphConvActivation
|
|
|
|
|
|
|
|
|
|
|
|
def _some_data():
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Gene', 1000)
|
|
|
|
d.add_node_type('Drug', 100)
|
|
|
|
d.add_relation_type('Target', 1, 0, None)
|
|
|
|
d.add_relation_type('Interaction', 0, 0, None)
|
|
|
|
d.add_relation_type('Side Effect: Nausea', 1, 1, None)
|
|
|
|
d.add_relation_type('Side Effect: Infertility', 1, 1, None)
|
|
|
|
d.add_relation_type('Side Effect: Death', 1, 1, None)
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
def _some_data_with_interactions():
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Gene', 1000)
|
|
|
|
d.add_node_type('Drug', 100)
|
|
|
|
d.add_relation_type('Target', 1, 0,
|
|
|
|
torch.rand((100, 1000), dtype=torch.float32).round())
|
|
|
|
d.add_relation_type('Interaction', 0, 0,
|
|
|
|
torch.rand((1000, 1000), dtype=torch.float32).round())
|
|
|
|
d.add_relation_type('Side Effect: Nausea', 1, 1,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
d.add_relation_type('Side Effect: Infertility', 1, 1,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
d.add_relation_type('Side Effect: Death', 1, 1,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_01():
|
|
|
|
d = _some_data()
|
|
|
|
for output_dim in [32, 64, 128]:
|
|
|
|
layer = InputLayer(d, output_dim)
|
|
|
|
assert layer.output_dim[0] == output_dim
|
|
|
|
assert len(layer.node_reps) == 2
|
|
|
|
assert layer.node_reps[0].shape == (1000, output_dim)
|
|
|
|
assert layer.node_reps[1].shape == (100, output_dim)
|
|
|
|
assert layer.data == d
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_02():
|
|
|
|
d = _some_data()
|
|
|
|
layer = InputLayer(d, 32)
|
|
|
|
res = layer()
|
|
|
|
assert isinstance(res[0], torch.Tensor)
|
|
|
|
assert isinstance(res[1], torch.Tensor)
|
|
|
|
assert res[0].shape == (1000, 32)
|
|
|
|
assert res[1].shape == (100, 32)
|
|
|
|
assert torch.all(res[0] == layer.node_reps[0])
|
|
|
|
assert torch.all(res[1] == layer.node_reps[1])
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_03():
|
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
|
pytest.skip('No CUDA devices on this host')
|
|
|
|
d = _some_data()
|
|
|
|
layer = InputLayer(d, 32)
|
|
|
|
device = torch.device('cuda:0')
|
|
|
|
layer = layer.to(device)
|
|
|
|
print(list(layer.parameters()))
|
|
|
|
# assert layer.device.type == 'cuda:0'
|
|
|
|
assert layer.node_reps[0].device == device
|
|
|
|
assert layer.node_reps[1].device == device
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_01():
|
|
|
|
d = _some_data()
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
assert layer.output_dim == [1000, 100]
|
|
|
|
assert len(layer.node_reps) == 2
|
|
|
|
assert layer.node_reps[0].shape == (1000, 1000)
|
|
|
|
assert layer.node_reps[1].shape == (100, 100)
|
|
|
|
assert layer.data == d
|
|
|
|
assert layer.is_sparse
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_02():
|
|
|
|
d = _some_data()
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
res = layer()
|
|
|
|
assert isinstance(res[0], torch.Tensor)
|
|
|
|
assert isinstance(res[1], torch.Tensor)
|
|
|
|
assert res[0].shape == (1000, 1000)
|
|
|
|
assert res[1].shape == (100, 100)
|
|
|
|
assert torch.all(res[0].to_dense() == layer.node_reps[0].to_dense())
|
|
|
|
assert torch.all(res[1].to_dense() == layer.node_reps[1].to_dense())
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_03():
|
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
|
pytest.skip('No CUDA devices on this host')
|
|
|
|
d = _some_data()
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
device = torch.device('cuda:0')
|
|
|
|
layer = layer.to(device)
|
|
|
|
print(list(layer.parameters()))
|
|
|
|
# assert layer.device.type == 'cuda:0'
|
|
|
|
assert layer.node_reps[0].device == device
|
|
|
|
assert layer.node_reps[1].device == device
|
|
|
|
|
|
|
|
|
|
|
|
def test_decagon_layer_01():
|
|
|
|
d = _some_data_with_interactions()
|
|
|
|
in_layer = InputLayer(d)
|
|
|
|
d_layer = DecagonLayer(d, in_layer, output_dim=32)
|
|
|
|
|
|
|
|
|
|
|
|
def test_decagon_layer_02():
|
|
|
|
d = _some_data_with_interactions()
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
d_layer = DecagonLayer(d, in_layer, output_dim=32)
|
|
|
|
_ = d_layer() # dummy call
|
|
|
|
|
|
|
|
|
|
|
|
def test_decagon_layer_03():
|
|
|
|
d = _some_data_with_interactions()
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
d_layer = DecagonLayer(d, in_layer, output_dim=32)
|
|
|
|
assert d_layer.data == d
|
|
|
|
assert d_layer.previous_layer == in_layer
|
|
|
|
assert d_layer.input_dim == [ 1000, 100 ]
|
|
|
|
assert not d_layer.is_sparse
|
|
|
|
assert d_layer.keep_prob == 1.
|
|
|
|
assert d_layer.rel_activation(0.5) == 0.5
|
|
|
|
x = torch.tensor([-1, 0, 0.5, 1])
|
|
|
|
assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
|
|
|
|
assert len(d_layer.next_layer_repr) == 2
|
|
|
|
|
|
|
|
for i in range(2):
|
|
|
|
assert len(d_layer.next_layer_repr[i]) == 2
|
|
|
|
assert isinstance(d_layer.next_layer_repr[i], list)
|
|
|
|
assert isinstance(d_layer.next_layer_repr[i][0], tuple)
|
|
|
|
assert isinstance(d_layer.next_layer_repr[i][0][0], list)
|
|
|
|
assert isinstance(d_layer.next_layer_repr[i][0][1], int)
|
|
|
|
assert all([
|
|
|
|
isinstance(dgca, DropoutGraphConvActivation) \
|
|
|
|
for dgca in d_layer.next_layer_repr[i][0][0]
|
|
|
|
])
|
|
|
|
assert all([
|
|
|
|
dgca.output_dim == 32 \
|
|
|
|
for dgca in d_layer.next_layer_repr[i][0][0]
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def test_decagon_layer_04():
|
|
|
|
# check if it is equivalent to MultiDGCA, as it should be
|
|
|
|
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Dummy', 100)
|
|
|
|
d.add_relation_type('Dummy Relation', 0, 0,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
|
|
|
|
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
|
|
|
|
multi_dgca = SparseMultiDGCA([10], 32,
|
|
|
|
[r.adjacency_matrix for r in d.relation_types[0, 0]],
|
|
|
|
keep_prob=1., activation=lambda x: x)
|
|
|
|
|
|
|
|
d_layer = DecagonLayer(d, in_layer, output_dim=32,
|
|
|
|
keep_prob=1., rel_activation=lambda x: x,
|
|
|
|
layer_activation=lambda x: x)
|
|
|
|
|
|
|
|
assert isinstance(d_layer.next_layer_repr[0][0][0][0],
|
|
|
|
DropoutGraphConvActivation)
|
|
|
|
|
|
|
|
weight = d_layer.next_layer_repr[0][0][0][0].graph_conv.weight
|
|
|
|
assert isinstance(weight, torch.Tensor)
|
|
|
|
|
|
|
|
assert len(multi_dgca.sparse_dgca) == 1
|
|
|
|
assert isinstance(multi_dgca.sparse_dgca[0], SparseDropoutGraphConvActivation)
|
|
|
|
|
|
|
|
multi_dgca.sparse_dgca[0].sparse_graph_conv.weight = weight
|
|
|
|
|
|
|
|
out_d_layer = d_layer()
|
|
|
|
out_multi_dgca = multi_dgca(in_layer())
|
|
|
|
|
|
|
|
assert isinstance(out_d_layer, list)
|
|
|
|
assert len(out_d_layer) == 1
|
|
|
|
|
|
|
|
assert torch.all(out_d_layer[0] == out_multi_dgca)
|
|
|
|
|
|
|
|
|
|
|
|
def test_decagon_layer_05():
|
|
|
|
# check if it is equivalent to MultiDGCA, as it should be
|
|
|
|
# this time for two relations, same edge type
|
|
|
|
|
|
|
|
d = Data()
|
|
|
|
d.add_node_type('Dummy', 100)
|
|
|
|
d.add_relation_type('Dummy Relation 1', 0, 0,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
|
|
|
|
d.add_relation_type('Dummy Relation 2', 0, 0,
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round().to_sparse())
|
|
|
|
|
|
|
|
in_layer = OneHotInputLayer(d)
|
|
|
|
|
|
|
|
multi_dgca = SparseMultiDGCA([100, 100], 32,
|
|
|
|
[r.adjacency_matrix for r in d.relation_types[0, 0]],
|
|
|
|
keep_prob=1., activation=lambda x: x)
|
|
|
|
|
|
|
|
d_layer = DecagonLayer(d, in_layer, output_dim=32,
|
|
|
|
keep_prob=1., rel_activation=lambda x: x,
|
|
|
|
layer_activation=lambda x: x)
|
|
|
|
|
|
|
|
assert all([
|
|
|
|
isinstance(dgca, DropoutGraphConvActivation) \
|
|
|
|
for dgca in d_layer.next_layer_repr[0][0][0]
|
|
|
|
])
|
|
|
|
|
|
|
|
weight = [ dgca.graph_conv.weight \
|
|
|
|
for dgca in d_layer.next_layer_repr[0][0][0] ]
|
|
|
|
assert all([
|
|
|
|
isinstance(w, torch.Tensor) \
|
|
|
|
for w in weight
|
|
|
|
])
|
|
|
|
|
|
|
|
assert len(multi_dgca.sparse_dgca) == 2
|
|
|
|
for i in range(2):
|
|
|
|
assert isinstance(multi_dgca.sparse_dgca[i], SparseDropoutGraphConvActivation)
|
|
|
|
|
|
|
|
for i in range(2):
|
|
|
|
multi_dgca.sparse_dgca[i].sparse_graph_conv.weight = weight[i]
|
|
|
|
|
|
|
|
out_d_layer = d_layer()
|
|
|
|
x = in_layer()
|
|
|
|
out_multi_dgca = multi_dgca([ x[0], x[0] ])
|
|
|
|
|
|
|
|
assert isinstance(out_d_layer, list)
|
|
|
|
assert len(out_d_layer) == 1
|
|
|
|
|
|
|
|
assert torch.all(out_d_layer[0] == out_multi_dgca)
|