@@ -1,346 +0,0 @@ | |||
# | |||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||
# License: GPLv3 | |||
# | |||
""" | |||
This module implements the basic convolutional blocks of Decagon. | |||
Just as a quick reminder, the basic convolution formula here is: | |||
y = A * (x * W) | |||
where: | |||
W is a weight matrix | |||
A is an adjacency matrix | |||
x is a matrix of latent representations of a particular type of neighbors. | |||
As we have x here twice, a trick is obviously necessary for this to work. | |||
A must be previously normalized with: | |||
c_{r}^{ij} = 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) | |||
or | |||
c_{r}^{i} = 1/|N_{r}^{i}| | |||
Let's work through this step by step to convince ourselves that the | |||
formula is correct. | |||
x = [ | |||
[0, 1, 0, 1], | |||
[1, 1, 1, 0], | |||
[0, 0, 0, 1] | |||
] | |||
W = [ | |||
[0, 1], | |||
[1, 0], | |||
[0.5, 0.5], | |||
[0.25, 0.75] | |||
] | |||
A = [ | |||
[0, 1, 0], | |||
[1, 0, 1], | |||
[0, 1, 0] | |||
] | |||
so the graph looks like this: | |||
(0) -- (1) -- (2) | |||
and therefore the representations in the next layer should be: | |||
h_{0}^{k+1} = c_{r}^{0,1} * h_{1}^{k} * W + c_{r}^{0} * h_{0}^{k} | |||
h_{1}^{k+1} = c_{r}^{0,1} * h_{0}^{k} * W + c_{r}^{2,1} * h_{2}^{k} + | |||
c_{r}^{1} * h_{1}^{k} | |||
h_{2}^{k+1} = c_{r}^{2,1} * h_{1}^{k} * W + c_{r}^{2} * h_{2}^{k} | |||
In actual Decagon code we can see that that latter part propagating directly | |||
the old representation is gone. I will try to do the same for now. | |||
So we have to only take care of: | |||
h_{0}^{k+1} = c_{r}^{0,1} * h_{1}^{k} * W | |||
h_{1}^{k+1} = c_{r}^{0,1} * h_{0}^{k} * W + c_{r}^{2,1} * h_{2}^{k} | |||
h_{2}^{k+1} = c_{r}^{2,1} * h_{1}^{k} * W | |||
If A is square the Decagon's EdgeMinibatchIterator preprocesses it as follows: | |||
A = A + eye(len(A)) | |||
rowsum = A.sum(1) | |||
deg_mat_inv_sqrt = diags(power(rowsum, -0.5)) | |||
A = dot(A, deg_mat_inv_sqrt) | |||
A = A.transpose() | |||
A = A.dot(deg_mat_inv_sqrt) | |||
Let's see what gives in our case: | |||
A = A + eye(len(A)) | |||
[ | |||
[1, 1, 0], | |||
[1, 1, 1], | |||
[0, 1, 1] | |||
] | |||
rowsum = A.sum(1) | |||
[2, 3, 2] | |||
deg_mat_inv_sqrt = diags(power(rowsum, -0.5)) | |||
[ | |||
[1./sqrt(2), 0, 0], | |||
[0, 1./sqrt(3), 0], | |||
[0, 0, 1./sqrt(2)] | |||
] | |||
A = dot(A, deg_mat_inv_sqrt) | |||
[ | |||
[ 1/sqrt(2), 1/sqrt(3), 0 ], | |||
[ 1/sqrt(2), 1/sqrt(3), 1/sqrt(2) ], | |||
[ 0, 1/sqrt(3), 1/sqrt(2) ] | |||
] | |||
A = A.transpose() | |||
[ | |||
[ 1/sqrt(2), 1/sqrt(2), 0 ], | |||
[ 1/sqrt(3), 1/sqrt(3), 1/sqrt(3) ], | |||
[ 0, 1/sqrt(2), 1/sqrt(2) ] | |||
] | |||
A = A.dot(deg_mat_inv_sqrt) | |||
[ | |||
[ 1/sqrt(2) * 1/sqrt(2), 1/sqrt(2) * 1/sqrt(3), 0 ], | |||
[ 1/sqrt(3) * 1/sqrt(2), 1/sqrt(3) * 1/sqrt(3), 1/sqrt(3) * 1/sqrt(2) ], | |||
[ 0, 1/sqrt(2) * 1/sqrt(3), 1/sqrt(2) * 1/sqrt(2) ], | |||
] | |||
thus: | |||
[ | |||
[0.5 , 0.40824829, 0. ], | |||
[0.40824829, 0.33333333, 0.40824829], | |||
[0. , 0.40824829, 0.5 ] | |||
] | |||
This checks out with the 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) formula. | |||
Then, we get back to the main calculation: | |||
y = x * W | |||
y = A * y | |||
y = x * W | |||
[ | |||
[ 1.25, 0.75 ], | |||
[ 1.5 , 1.5 ], | |||
[ 0.25, 0.75 ] | |||
] | |||
y = A * y | |||
[ | |||
0.5 * [ 1.25, 0.75 ] + 0.40824829 * [ 1.5, 1.5 ], | |||
0.40824829 * [ 1.25, 0.75 ] + 0.33333333 * [ 1.5, 1.5 ] + 0.40824829 * [ 0.25, 0.75 ], | |||
0.40824829 * [ 1.5, 1.5 ] + 0.5 * [ 0.25, 0.75 ] | |||
] | |||
that is: | |||
[ | |||
[1.23737243, 0.98737244], | |||
[1.11237243, 1.11237243], | |||
[0.73737244, 0.98737244] | |||
]. | |||
All checks out nicely, good. | |||
""" | |||
import torch | |||
from .dropout import dropout_sparse, \ | |||
dropout | |||
from .weights import init_glorot | |||
from typing import List, Callable | |||
class SparseGraphConv(torch.nn.Module): | |||
"""Convolution layer for sparse inputs.""" | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.sparse.mm(x, self.weight) | |||
x = torch.sparse.mm(self.adjacency_matrix, x) | |||
return x | |||
class SparseDropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrix = adjacency_matrix | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.sparse_graph_conv = SparseGraphConv(input_dim, output_dim, adjacency_matrix) | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout_sparse(x, self.keep_prob) | |||
x = self.sparse_graph_conv(x) | |||
x = self.activation(x) | |||
return x | |||
class SparseMultiDGCA(torch.nn.Module): | |||
def __init__(self, input_dim: List[int], output_dim: int, | |||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrices = adjacency_matrices | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.sparse_dgca = None | |||
self.build() | |||
def build(self): | |||
if len(self.input_dim) != len(self.adjacency_matrices): | |||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||
self.sparse_dgca = [] | |||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||
self.sparse_dgca.append(SparseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||
def forward(self, x: List[torch.Tensor]) -> torch.Tensor: | |||
if not isinstance(x, list): | |||
raise ValueError('x must be a list of tensors') | |||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||
for i, f in enumerate(self.sparse_dgca): | |||
out += f(x[i]) | |||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||
return out | |||
class DenseGraphConv(torch.nn.Module): | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.mm(x, self.weight) | |||
x = torch.mm(self.adjacency_matrix, x) | |||
return x | |||
class DenseDropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.graph_conv = DenseGraphConv(input_dim, output_dim, adjacency_matrix) | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout(x, keep_prob=self.keep_prob) | |||
x = self.graph_conv(x) | |||
x = self.activation(x) | |||
return x | |||
class DenseMultiDGCA(torch.nn.Module): | |||
def __init__(self, input_dim: List[int], output_dim: int, | |||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrices = adjacency_matrices | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.dgca = None | |||
self.build() | |||
def build(self): | |||
if len(self.input_dim) != len(self.adjacency_matrices): | |||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||
self.dgca = [] | |||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |||
if not isinstance(x, list): | |||
raise ValueError('x must be a list of tensors') | |||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||
for i, f in enumerate(self.dgca): | |||
out += f(x[i]) | |||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||
return out | |||
class GraphConv(torch.nn.Module): | |||
"""Convolution layer for sparse AND dense inputs.""" | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.sparse.mm(x, self.weight) \ | |||
if x.is_sparse \ | |||
else torch.mm(x, self.weight) | |||
x = torch.sparse.mm(self.adjacency_matrix, x) \ | |||
if self.adjacency_matrix.is_sparse \ | |||
else torch.mm(self.adjacency_matrix, x) | |||
return x | |||
class DropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrix = adjacency_matrix | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.graph_conv = GraphConv(input_dim, output_dim, adjacency_matrix) | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout_sparse(x, self.keep_prob) \ | |||
if x.is_sparse \ | |||
else dropout(x, self.keep_prob) | |||
x = self.graph_conv(x) | |||
x = self.activation(x) | |||
return x |
@@ -0,0 +1,168 @@ | |||
# | |||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||
# License: GPLv3 | |||
# | |||
""" | |||
This module implements the basic convolutional blocks of Decagon. | |||
Just as a quick reminder, the basic convolution formula here is: | |||
y = A * (x * W) | |||
where: | |||
W is a weight matrix | |||
A is an adjacency matrix | |||
x is a matrix of latent representations of a particular type of neighbors. | |||
As we have x here twice, a trick is obviously necessary for this to work. | |||
A must be previously normalized with: | |||
c_{r}^{ij} = 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) | |||
or | |||
c_{r}^{i} = 1/|N_{r}^{i}| | |||
Let's work through this step by step to convince ourselves that the | |||
formula is correct. | |||
x = [ | |||
[0, 1, 0, 1], | |||
[1, 1, 1, 0], | |||
[0, 0, 0, 1] | |||
] | |||
W = [ | |||
[0, 1], | |||
[1, 0], | |||
[0.5, 0.5], | |||
[0.25, 0.75] | |||
] | |||
A = [ | |||
[0, 1, 0], | |||
[1, 0, 1], | |||
[0, 1, 0] | |||
] | |||
so the graph looks like this: | |||
(0) -- (1) -- (2) | |||
and therefore the representations in the next layer should be: | |||
h_{0}^{k+1} = c_{r}^{0,1} * h_{1}^{k} * W + c_{r}^{0} * h_{0}^{k} | |||
h_{1}^{k+1} = c_{r}^{0,1} * h_{0}^{k} * W + c_{r}^{2,1} * h_{2}^{k} + | |||
c_{r}^{1} * h_{1}^{k} | |||
h_{2}^{k+1} = c_{r}^{2,1} * h_{1}^{k} * W + c_{r}^{2} * h_{2}^{k} | |||
In actual Decagon code we can see that that latter part propagating directly | |||
the old representation is gone. I will try to do the same for now. | |||
So we have to only take care of: | |||
h_{0}^{k+1} = c_{r}^{0,1} * h_{1}^{k} * W | |||
h_{1}^{k+1} = c_{r}^{0,1} * h_{0}^{k} * W + c_{r}^{2,1} * h_{2}^{k} | |||
h_{2}^{k+1} = c_{r}^{2,1} * h_{1}^{k} * W | |||
If A is square the Decagon's EdgeMinibatchIterator preprocesses it as follows: | |||
A = A + eye(len(A)) | |||
rowsum = A.sum(1) | |||
deg_mat_inv_sqrt = diags(power(rowsum, -0.5)) | |||
A = dot(A, deg_mat_inv_sqrt) | |||
A = A.transpose() | |||
A = A.dot(deg_mat_inv_sqrt) | |||
Let's see what gives in our case: | |||
A = A + eye(len(A)) | |||
[ | |||
[1, 1, 0], | |||
[1, 1, 1], | |||
[0, 1, 1] | |||
] | |||
rowsum = A.sum(1) | |||
[2, 3, 2] | |||
deg_mat_inv_sqrt = diags(power(rowsum, -0.5)) | |||
[ | |||
[1./sqrt(2), 0, 0], | |||
[0, 1./sqrt(3), 0], | |||
[0, 0, 1./sqrt(2)] | |||
] | |||
A = dot(A, deg_mat_inv_sqrt) | |||
[ | |||
[ 1/sqrt(2), 1/sqrt(3), 0 ], | |||
[ 1/sqrt(2), 1/sqrt(3), 1/sqrt(2) ], | |||
[ 0, 1/sqrt(3), 1/sqrt(2) ] | |||
] | |||
A = A.transpose() | |||
[ | |||
[ 1/sqrt(2), 1/sqrt(2), 0 ], | |||
[ 1/sqrt(3), 1/sqrt(3), 1/sqrt(3) ], | |||
[ 0, 1/sqrt(2), 1/sqrt(2) ] | |||
] | |||
A = A.dot(deg_mat_inv_sqrt) | |||
[ | |||
[ 1/sqrt(2) * 1/sqrt(2), 1/sqrt(2) * 1/sqrt(3), 0 ], | |||
[ 1/sqrt(3) * 1/sqrt(2), 1/sqrt(3) * 1/sqrt(3), 1/sqrt(3) * 1/sqrt(2) ], | |||
[ 0, 1/sqrt(2) * 1/sqrt(3), 1/sqrt(2) * 1/sqrt(2) ], | |||
] | |||
thus: | |||
[ | |||
[0.5 , 0.40824829, 0. ], | |||
[0.40824829, 0.33333333, 0.40824829], | |||
[0. , 0.40824829, 0.5 ] | |||
] | |||
This checks out with the 1/sqrt(|N_{r}^{i}| |N_{r}^{j}|) formula. | |||
Then, we get back to the main calculation: | |||
y = x * W | |||
y = A * y | |||
y = x * W | |||
[ | |||
[ 1.25, 0.75 ], | |||
[ 1.5 , 1.5 ], | |||
[ 0.25, 0.75 ] | |||
] | |||
y = A * y | |||
[ | |||
0.5 * [ 1.25, 0.75 ] + 0.40824829 * [ 1.5, 1.5 ], | |||
0.40824829 * [ 1.25, 0.75 ] + 0.33333333 * [ 1.5, 1.5 ] + 0.40824829 * [ 0.25, 0.75 ], | |||
0.40824829 * [ 1.5, 1.5 ] + 0.5 * [ 0.25, 0.75 ] | |||
] | |||
that is: | |||
[ | |||
[1.23737243, 0.98737244], | |||
[1.11237243, 1.11237243], | |||
[0.73737244, 0.98737244] | |||
]. | |||
All checks out nicely, good. | |||
""" | |||
from .dense import * | |||
from .sparse import * | |||
from .universal import * |
@@ -0,0 +1,73 @@ | |||
# | |||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||
# License: GPLv3 | |||
# | |||
import torch | |||
from .dropout import dropout | |||
from .weights import init_glorot | |||
from typing import List, Callable | |||
class DenseGraphConv(torch.nn.Module): | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.mm(x, self.weight) | |||
x = torch.mm(self.adjacency_matrix, x) | |||
return x | |||
class DenseDropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.graph_conv = DenseGraphConv(input_dim, output_dim, adjacency_matrix) | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout(x, keep_prob=self.keep_prob) | |||
x = self.graph_conv(x) | |||
x = self.activation(x) | |||
return x | |||
class DenseMultiDGCA(torch.nn.Module): | |||
def __init__(self, input_dim: List[int], output_dim: int, | |||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrices = adjacency_matrices | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.dgca = None | |||
self.build() | |||
def build(self): | |||
if len(self.input_dim) != len(self.adjacency_matrices): | |||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||
self.dgca = [] | |||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |||
if not isinstance(x, list): | |||
raise ValueError('x must be a list of tensors') | |||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||
for i, f in enumerate(self.dgca): | |||
out += f(x[i]) | |||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||
return out |
@@ -0,0 +1,78 @@ | |||
# | |||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||
# License: GPLv3 | |||
# | |||
import torch | |||
from .dropout import dropout_sparse | |||
from .weights import init_glorot | |||
from typing import List, Callable | |||
class SparseGraphConv(torch.nn.Module): | |||
"""Convolution layer for sparse inputs.""" | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.sparse.mm(x, self.weight) | |||
x = torch.sparse.mm(self.adjacency_matrix, x) | |||
return x | |||
class SparseDropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrix = adjacency_matrix | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.sparse_graph_conv = SparseGraphConv(input_dim, output_dim, adjacency_matrix) | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout_sparse(x, self.keep_prob) | |||
x = self.sparse_graph_conv(x) | |||
x = self.activation(x) | |||
return x | |||
class SparseMultiDGCA(torch.nn.Module): | |||
def __init__(self, input_dim: List[int], output_dim: int, | |||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrices = adjacency_matrices | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.sparse_dgca = None | |||
self.build() | |||
def build(self): | |||
if len(self.input_dim) != len(self.adjacency_matrices): | |||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||
self.sparse_dgca = [] | |||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||
self.sparse_dgca.append(SparseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||
def forward(self, x: List[torch.Tensor]) -> torch.Tensor: | |||
if not isinstance(x, list): | |||
raise ValueError('x must be a list of tensors') | |||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||
for i, f in enumerate(self.sparse_dgca): | |||
out += f(x[i]) | |||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||
return out |
@@ -0,0 +1,85 @@ | |||
# | |||
# Copyright (C) Stanislaw Adaszewski, 2020 | |||
# License: GPLv3 | |||
# | |||
import torch | |||
from .dropout import dropout_sparse, \ | |||
dropout | |||
from .weights import init_glorot | |||
from typing import List, Callable | |||
class GraphConv(torch.nn.Module): | |||
"""Convolution layer for sparse AND dense inputs.""" | |||
def __init__(self, in_channels: int, out_channels: int, | |||
adjacency_matrix: torch.Tensor, **kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.in_channels = in_channels | |||
self.out_channels = out_channels | |||
self.weight = init_glorot(in_channels, out_channels) | |||
self.adjacency_matrix = adjacency_matrix | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = torch.sparse.mm(x, self.weight) \ | |||
if x.is_sparse \ | |||
else torch.mm(x, self.weight) | |||
x = torch.sparse.mm(self.adjacency_matrix, x) \ | |||
if self.adjacency_matrix.is_sparse \ | |||
else torch.mm(self.adjacency_matrix, x) | |||
return x | |||
class DropoutGraphConvActivation(torch.nn.Module): | |||
def __init__(self, input_dim: int, output_dim: int, | |||
adjacency_matrix: torch.Tensor, keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrix = adjacency_matrix | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.graph_conv = GraphConv(input_dim, output_dim, adjacency_matrix) | |||
def forward(self, x: torch.Tensor) -> torch.Tensor: | |||
x = dropout_sparse(x, self.keep_prob) \ | |||
if x.is_sparse \ | |||
else dropout(x, self.keep_prob) | |||
x = self.graph_conv(x) | |||
x = self.activation(x) | |||
return x | |||
class MultiDGCA(torch.nn.Module): | |||
def __init__(self, input_dim: List[int], output_dim: int, | |||
adjacency_matrices: List[torch.Tensor], keep_prob: float=1., | |||
activation: Callable[[torch.Tensor], torch.Tensor]=torch.nn.functional.relu, | |||
**kwargs) -> None: | |||
super().__init__(**kwargs) | |||
self.input_dim = input_dim | |||
self.output_dim = output_dim | |||
self.adjacency_matrices = adjacency_matrices | |||
self.keep_prob = keep_prob | |||
self.activation = activation | |||
self.dgca = None | |||
self.build() | |||
def build(self): | |||
if len(self.input_dim) != len(self.adjacency_matrices): | |||
raise ValueError('input_dim must have the same length as adjacency_matrices') | |||
self.dgca = [] | |||
for input_dim, adj_mat in zip(self.input_dim, self.adjacency_matrices): | |||
self.dgca.append(DenseDropoutGraphConvActivation(input_dim, self.output_dim, adj_mat, self.keep_prob, self.activation)) | |||
def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]: | |||
if not isinstance(x, list): | |||
raise ValueError('x must be a list of tensors') | |||
out = torch.zeros(len(x[0]), self.output_dim, dtype=x[0].dtype) | |||
for i, f in enumerate(self.dgca): | |||
out += f(x[i]) | |||
out = torch.nn.functional.normalize(out, p=2, dim=1) | |||
return out |