| @@ -3,6 +3,9 @@ from icosagon.bulkdec import BulkDecodeLayer | |||
| from icosagon.input import OneHotInputLayer | |||
| from icosagon.convlayer import DecagonLayer | |||
| import torch | |||
| import pytest | |||
| import time | |||
| import sys | |||
| def test_bulk_decode_layer_01(): | |||
| @@ -111,3 +114,127 @@ def test_bulk_decode_layer_03_big(): | |||
| assert len(pred[0]) == len(data.relation_families[0].relation_types) | |||
| assert pred[0].shape[1] == data.node_types[0].count | |||
| assert pred[0].shape[2] == data.node_types[1].count | |||
| def test_bulk_decode_layer_03_huge_gpu(): | |||
| if torch.cuda.device_count() == 0: | |||
| pytest.skip('test_bulk_decode_layer_03_huge_gpu() requires CUDA support') | |||
| device = torch.device('cuda:0') | |||
| data = Data() | |||
| data.add_node_type('Foo', 20000) | |||
| data.add_node_type('Bar', 21000) | |||
| fam = data.add_relation_family('Foo-Bar', 0, 1, False) | |||
| print('Adding Foobar Relation 1...') | |||
| fam.add_relation_type('Foobar Relation 1', | |||
| torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device), | |||
| torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device)) | |||
| print('Adding Foobar Relation 2...') | |||
| fam.add_relation_type('Foobar Relation 2', | |||
| torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device), | |||
| torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device)) | |||
| in_layer = OneHotInputLayer(data) | |||
| d_layer = DecagonLayer(in_layer.output_dim, 32, data) | |||
| dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, | |||
| keep_prob=1., activation=lambda x: x) | |||
| seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) | |||
| seq = seq.to(device) | |||
| print('Starting forward pass...') | |||
| t = time.time() | |||
| pred = seq(None) | |||
| print('Elapsed:', time.time() - t) | |||
| assert isinstance(pred, list) | |||
| assert len(pred) == len(data.relation_families) | |||
| assert isinstance(pred[0], torch.Tensor) | |||
| assert len(pred[0].shape) == 3 | |||
| assert len(pred[0]) == len(data.relation_families[0].relation_types) | |||
| assert pred[0].shape[1] == data.node_types[0].count | |||
| assert pred[0].shape[2] == data.node_types[1].count | |||
| def test_bulk_decode_layer_04_huge_multirel_gpu(): | |||
| if torch.cuda.device_count() == 0: | |||
| pytest.skip('test_bulk_decode_layer_04_huge_multirel_gpu() requires CUDA support') | |||
| if torch.cuda.get_device_properties(0).total_memory < 64000000000: | |||
| pytest.skip('test_bulk_decode_layer_04_huge_multirel_gpu() requires GPU with 64GB of memory') | |||
| device = torch.device('cuda:0') | |||
| data = Data() | |||
| data.add_node_type('Foo', 20000) | |||
| data.add_node_type('Bar', 21000) | |||
| fam = data.add_relation_family('Foo-Bar', 0, 1, False) | |||
| print('Generating adj_mat ...') | |||
| adj_mat = torch.rand((20000, 21000), dtype=torch.float32).round().to_sparse().to(device) | |||
| print('Generating adj_mat_back ...') | |||
| adj_mat_back = torch.rand((21000, 20000), dtype=torch.float32).round().to_sparse().to(device) | |||
| print('Adding relations ...') | |||
| for i in range(1300): | |||
| sys.stdout.write('.') | |||
| sys.stdout.flush() | |||
| fam.add_relation_type(f'Foobar Relation {i}', adj_mat, adj_mat_back) | |||
| print() | |||
| in_layer = OneHotInputLayer(data) | |||
| d_layer = DecagonLayer(in_layer.output_dim, 32, data) | |||
| dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, | |||
| keep_prob=1., activation=lambda x: x) | |||
| seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) | |||
| seq = seq.to(device) | |||
| print('Starting forward pass...') | |||
| t = time.time() | |||
| pred = seq(None) | |||
| print('Elapsed:', time.time() - t) | |||
| assert isinstance(pred, list) | |||
| assert len(pred) == len(data.relation_families) | |||
| assert isinstance(pred[0], torch.Tensor) | |||
| assert len(pred[0].shape) == 3 | |||
| assert len(pred[0]) == len(data.relation_families[0].relation_types) | |||
| assert pred[0].shape[1] == data.node_types[0].count | |||
| assert pred[0].shape[2] == data.node_types[1].count | |||
| def test_bulk_decode_layer_04_big_multirel_gpu(): | |||
| if torch.cuda.device_count() == 0: | |||
| pytest.skip('test_bulk_decode_layer_04_big_multirel_gpu() requires CUDA support') | |||
| device = torch.device('cuda:0') | |||
| data = Data() | |||
| data.add_node_type('Foo', 2000) | |||
| data.add_node_type('Bar', 2100) | |||
| fam = data.add_relation_family('Foo-Bar', 0, 1, False) | |||
| print('Generating adj_mat ...') | |||
| adj_mat = torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse().to(device) | |||
| print('Generating adj_mat_back ...') | |||
| adj_mat_back = torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse().to(device) | |||
| print('Adding relations ...') | |||
| for i in range(1300): | |||
| sys.stdout.write('.') | |||
| sys.stdout.flush() | |||
| fam.add_relation_type(f'Foobar Relation {i}', adj_mat, adj_mat_back) | |||
| print() | |||
| in_layer = OneHotInputLayer(data) | |||
| d_layer = DecagonLayer(in_layer.output_dim, 32, data) | |||
| dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, | |||
| keep_prob=1., activation=lambda x: x) | |||
| seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) | |||
| seq = seq.to(device) | |||
| print('Starting forward pass...') | |||
| t = time.time() | |||
| pred = seq(None) | |||
| print('Elapsed:', time.time() - t) | |||
| assert isinstance(pred, list) | |||
| assert len(pred) == len(data.relation_families) | |||
| assert isinstance(pred[0], torch.Tensor) | |||
| assert len(pred[0].shape) == 3 | |||
| assert len(pred[0]) == len(data.relation_families[0].relation_types) | |||
| assert pred[0].shape[1] == data.node_types[0].count | |||
| assert pred[0].shape[2] == data.node_types[1].count | |||