|
@@ -0,0 +1,106 @@ |
|
|
|
|
|
from icosagon.input import InputLayer, \
|
|
|
|
|
|
OneHotInputLayer
|
|
|
|
|
|
from icosagon.data import Data
|
|
|
|
|
|
import torch
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _some_data():
|
|
|
|
|
|
d = Data()
|
|
|
|
|
|
d.add_node_type('Gene', 1000)
|
|
|
|
|
|
d.add_node_type('Drug', 100)
|
|
|
|
|
|
d.add_relation_type('Target', 1, 0, torch.rand(100, 1000))
|
|
|
|
|
|
d.add_relation_type('Interaction', 0, 0, torch.rand(1000, 1000))
|
|
|
|
|
|
d.add_relation_type('Side Effect: Nausea', 1, 1, torch.rand(100, 100))
|
|
|
|
|
|
d.add_relation_type('Side Effect: Infertility', 1, 1, torch.rand(100, 100))
|
|
|
|
|
|
d.add_relation_type('Side Effect: Death', 1, 1, torch.rand(100, 100))
|
|
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _some_data_with_interactions():
|
|
|
|
|
|
d = Data()
|
|
|
|
|
|
d.add_node_type('Gene', 1000)
|
|
|
|
|
|
d.add_node_type('Drug', 100)
|
|
|
|
|
|
d.add_relation_type('Target', 1, 0,
|
|
|
|
|
|
torch.rand((100, 1000), dtype=torch.float32).round())
|
|
|
|
|
|
d.add_relation_type('Interaction', 0, 0,
|
|
|
|
|
|
torch.rand((1000, 1000), dtype=torch.float32).round())
|
|
|
|
|
|
d.add_relation_type('Side Effect: Nausea', 1, 1,
|
|
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
|
|
d.add_relation_type('Side Effect: Infertility', 1, 1,
|
|
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
|
|
d.add_relation_type('Side Effect: Death', 1, 1,
|
|
|
|
|
|
torch.rand((100, 100), dtype=torch.float32).round())
|
|
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_01():
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
for output_dim in [32, 64, 128]:
|
|
|
|
|
|
layer = InputLayer(d, output_dim)
|
|
|
|
|
|
assert layer.output_dim[0] == output_dim
|
|
|
|
|
|
assert len(layer.node_reps) == 2
|
|
|
|
|
|
assert layer.node_reps[0].shape == (1000, output_dim)
|
|
|
|
|
|
assert layer.node_reps[1].shape == (100, output_dim)
|
|
|
|
|
|
assert layer.data == d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_02():
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
layer = InputLayer(d, 32)
|
|
|
|
|
|
res = layer(None)
|
|
|
|
|
|
assert isinstance(res[0], torch.Tensor)
|
|
|
|
|
|
assert isinstance(res[1], torch.Tensor)
|
|
|
|
|
|
assert res[0].shape == (1000, 32)
|
|
|
|
|
|
assert res[1].shape == (100, 32)
|
|
|
|
|
|
assert torch.all(res[0] == layer.node_reps[0])
|
|
|
|
|
|
assert torch.all(res[1] == layer.node_reps[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_input_layer_03():
|
|
|
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
|
|
|
pytest.skip('No CUDA devices on this host')
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
layer = InputLayer(d, 32)
|
|
|
|
|
|
device = torch.device('cuda:0')
|
|
|
|
|
|
layer = layer.to(device)
|
|
|
|
|
|
print(list(layer.parameters()))
|
|
|
|
|
|
# assert layer.device.type == 'cuda:0'
|
|
|
|
|
|
assert layer.node_reps[0].device == device
|
|
|
|
|
|
assert layer.node_reps[1].device == device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_01():
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
|
|
assert layer.output_dim == [1000, 100]
|
|
|
|
|
|
assert len(layer.node_reps) == 2
|
|
|
|
|
|
assert layer.node_reps[0].shape == (1000, 1000)
|
|
|
|
|
|
assert layer.node_reps[1].shape == (100, 100)
|
|
|
|
|
|
assert layer.data == d
|
|
|
|
|
|
assert layer.is_sparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_02():
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
|
|
res = layer(None)
|
|
|
|
|
|
assert isinstance(res[0], torch.Tensor)
|
|
|
|
|
|
assert isinstance(res[1], torch.Tensor)
|
|
|
|
|
|
assert res[0].shape == (1000, 1000)
|
|
|
|
|
|
assert res[1].shape == (100, 100)
|
|
|
|
|
|
assert torch.all(res[0].to_dense() == layer.node_reps[0].to_dense())
|
|
|
|
|
|
assert torch.all(res[1].to_dense() == layer.node_reps[1].to_dense())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_one_hot_input_layer_03():
|
|
|
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
|
|
|
pytest.skip('No CUDA devices on this host')
|
|
|
|
|
|
d = _some_data()
|
|
|
|
|
|
layer = OneHotInputLayer(d)
|
|
|
|
|
|
device = torch.device('cuda:0')
|
|
|
|
|
|
layer = layer.to(device)
|
|
|
|
|
|
print(list(layer.parameters()))
|
|
|
|
|
|
# assert layer.device.type == 'cuda:0'
|
|
|
|
|
|
assert layer.node_reps[0].device == device
|
|
|
|
|
|
assert layer.node_reps[1].device == device
|