IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an email to s dot adaszewski at gmail dot com. User accounts are meant only to report issues and/or generate pull requests. This is a purpose-specific Git hosting for ADARED projects. Thank you for your understanding!
Преглед на файлове

Add test_split_data_01/02().

master
Stanislaw Adaszewski преди 4 години
родител
ревизия
e184699365
променени са 2 файла, в които са добавени 130 реда и са изтрити 5 реда
  1. +3
    -3
      tests/triacontagon/test_loop.py
  2. +127
    -2
      tests/triacontagon/test_split.py

+ 3
- 3
tests/triacontagon/test_loop.py Целия файл

@@ -83,7 +83,7 @@ def test_train_loop_01():
[1, 0, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 1, 0, 0, 0]
])
], dtype=torch.float32)
foo_foo = (foo_foo + foo_foo.transpose(0, 1)) / 2
foo_bar = torch.tensor([
@@ -92,7 +92,7 @@ def test_train_loop_01():
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 1]
])
], dtype=torch.float32)
bar_foo = foo_bar.transpose(0, 1)
bar_bar = torch.tensor([
@@ -100,7 +100,7 @@ def test_train_loop_01():
[1, 0, 0, 0],
[0, 1, 0, 1],
[0, 1, 0, 0],
])
], dtype=torch.float32)
bar_bar = (bar_bar + bar_bar.transpose(0, 1)) / 2
data.add_edge_type('Foo-Foo', 0, 0, [


+ 127
- 2
tests/triacontagon/test_split.py Целия файл

@@ -1,7 +1,10 @@
from triacontagon.split import split_adj_mat, \
split_edge_type
split_edge_type, \
split_data
from triacontagon.util import _equal
from triacontagon.data import EdgeType
from triacontagon.data import EdgeType, \
Data
from triacontagon.decode import dedicom_decoder
import torch
@@ -122,3 +125,125 @@ def test_split_edge_type_04():
res[0].adjacency_matrices[1] + \
res[1].adjacency_matrices[1] + \
res[2].adjacency_matrices[1]))
def test_split_data_01():
data = Data()
data.add_vertex_type('Foo', 5)
data.add_vertex_type('Bar', 4)
foo_foo = torch.tensor([
[0, 1, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 1, 0, 0, 1],
[0, 1, 0, 0, 0],
[1, 0, 0, 1, 0]
], dtype=torch.float32)
foo_foo = (foo_foo + foo_foo.transpose(0, 1)) / 2
foo_bar = torch.tensor([
[0, 1, 0, 1],
[0, 0, 0, 1],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 1]
], dtype=torch.float32)
bar_foo = foo_bar.transpose(0, 1)
bar_bar = torch.tensor([
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 1],
[0, 1, 0, 0],
], dtype=torch.float32)
bar_bar = (bar_bar + bar_bar.transpose(0, 1)) / 2
data.add_edge_type('Foo-Foo', 0, 0, [
foo_foo.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Foo-Bar', 0, 1, [
foo_bar.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Bar-Foo', 1, 0, [
bar_foo.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Bar-Bar', 1, 1, [
bar_bar.to_sparse().coalesce()
], dedicom_decoder)
(res,) = split_data(data, (1.,))
assert torch.all(_equal(res.edge_types[0, 0].adjacency_matrices[0],
data.edge_types[0, 0].adjacency_matrices[0]))
assert torch.all(_equal(res.edge_types[0, 1].adjacency_matrices[0],
data.edge_types[0, 1].adjacency_matrices[0]))
assert torch.all(_equal(res.edge_types[1, 0].adjacency_matrices[0],
data.edge_types[1, 0].adjacency_matrices[0]))
assert torch.all(_equal(res.edge_types[1, 1].adjacency_matrices[0],
data.edge_types[1, 1].adjacency_matrices[0]))
def test_split_data_02():
data = Data()
data.add_vertex_type('Foo', 5)
data.add_vertex_type('Bar', 4)
foo_foo = torch.tensor([
[0, 1, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 1, 0, 0, 1],
[0, 1, 0, 0, 0],
[1, 0, 0, 1, 0]
], dtype=torch.float32)
foo_foo = (foo_foo + foo_foo.transpose(0, 1)) / 2
foo_bar = torch.tensor([
[0, 1, 0, 1],
[0, 0, 0, 1],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 1]
], dtype=torch.float32)
bar_foo = foo_bar.transpose(0, 1)
bar_bar = torch.tensor([
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 1],
[0, 1, 0, 0],
], dtype=torch.float32)
bar_bar = (bar_bar + bar_bar.transpose(0, 1)) / 2
data.add_edge_type('Foo-Foo', 0, 0, [
foo_foo.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Foo-Bar', 0, 1, [
foo_bar.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Bar-Foo', 1, 0, [
bar_foo.to_sparse().coalesce()
], dedicom_decoder)
data.add_edge_type('Bar-Bar', 1, 1, [
bar_bar.to_sparse().coalesce()
], dedicom_decoder)
a, b = split_data(data, (.5,.5))
assert torch.all(_equal(a.edge_types[0, 0].adjacency_matrices[0] + \
b.edge_types[0, 0].adjacency_matrices[0],
data.edge_types[0, 0].adjacency_matrices[0]))
assert torch.all(_equal(a.edge_types[0, 1].adjacency_matrices[0] + \
b.edge_types[0, 1].adjacency_matrices[0],
data.edge_types[0, 1].adjacency_matrices[0]))
assert torch.all(_equal(a.edge_types[1, 0].adjacency_matrices[0] + \
b.edge_types[1, 0].adjacency_matrices[0],
data.edge_types[1, 0].adjacency_matrices[0]))
assert torch.all(_equal(a.edge_types[1, 1].adjacency_matrices[0] + \
b.edge_types[1, 1].adjacency_matrices[0],
data.edge_types[1, 1].adjacency_matrices[0]))

Loading…
Отказ
Запис