@@ -15,6 +15,25 @@ from typing import Type, \ | |||
Dict, \ | |||
Tuple | |||
from .decode import DEDICOMDecoder | |||
from dataclasses import dataclass | |||
@dataclass | |||
class RelationPredictions(object): | |||
edges_pos: TrainValTest | |||
edges_neg: TrainValTest | |||
edges_back_pos: TrainValTest | |||
edges_back_neg: TrainValTest | |||
@dataclass | |||
class RelationFamilyPredictions(object): | |||
relation_types: List[RelationPredictions] | |||
@dataclass | |||
class Predictions(object): | |||
relation_families: List[RelationFamilyPredictions] | |||
class DecodeLayer(torch.nn.Module): | |||
@@ -30,13 +49,16 @@ class DecodeLayer(torch.nn.Module): | |||
if not isinstance(input_dim, list): | |||
raise TypeError('input_dim must be a List') | |||
if len(input_dim) != len(data.node_types): | |||
raise ValueError('input_dim must have length equal to num_node_types') | |||
if not all([ a == input_dim[0] for a in input_dim ]): | |||
raise ValueError('All elements of input_dim must have the same value') | |||
if not isinstance(data, PreparedData): | |||
raise TypeError('data must be an instance of PreparedData') | |||
self.input_dim = input_dim | |||
self.input_dim = input_dim[0] | |||
self.output_dim = 1 | |||
self.data = data | |||
self.keep_prob = keep_prob | |||
@@ -47,42 +69,38 @@ class DecodeLayer(torch.nn.Module): | |||
def build(self) -> None: | |||
self.decoders = [] | |||
for fam in self.data.relation_families: | |||
for (node_type_row, node_type_column), rels in fam.relation_types.items(): | |||
for r in rels: | |||
pass | |||
dec = fam.decoder_class() | |||
dec = fam.decoder_class(self.input_dim, len(fam.relation_types), | |||
self.keep_prob, self.activation) | |||
self.decoders.append(dec) | |||
for (node_type_row, node_type_column), rels in self.data.relation_types.items(): | |||
if len(rels) == 0: | |||
continue | |||
if isinstance(self.decoder_class, dict): | |||
if (node_type_row, node_type_column) in self.decoder_class: | |||
decoder_class = self.decoder_class[node_type_row, node_type_column] | |||
elif (node_type_column, node_type_row) in self.decoder_class: | |||
decoder_class = self.decoder_class[node_type_column, node_type_row] | |||
else: | |||
raise KeyError('Decoder not specified for edge type: %s -- %s' % ( | |||
self.data.node_types[node_type_row].name, | |||
self.data.node_types[node_type_column].name)) | |||
else: | |||
decoder_class = self.decoder_class | |||
self.decoders[node_type_row, node_type_column] = \ | |||
decoder_class(self.input_dim[node_type_row], | |||
num_relation_types = len(rels), | |||
keep_prob = self.keep_prob, | |||
activation = self.activation) | |||
def forward(self, last_layer_repr: List[torch.Tensor]) -> Dict[Tuple[int, int], List[torch.Tensor]]: | |||
res = {} | |||
for (node_type_row, node_type_column), dec in self.decoders.items(): | |||
inputs_row = last_layer_repr[node_type_row] | |||
inputs_column = last_layer_repr[node_type_column] | |||
pred_adj_matrices = [ dec(inputs_row, inputs_column, k) for k in range(dec.num_relation_types) ] | |||
res[node_type_row, node_type_column] = pred_adj_matrices | |||
def _get_tvt(self, r, edge_list_attr_names, row, column, k, last_layer_repr, dec): | |||
pred = [] | |||
for p in edge_list_attr_names: | |||
tvt = [] | |||
for t in ['train', 'val', 'test']: | |||
# print('r:', r) | |||
edges = getattr(getattr(r, p), t) | |||
inputs_row = last_layer_repr[row][edges[:, 0]] | |||
inputs_column = last_layer_repr[column][edges[:, 1]] | |||
tvt.append(dec(inputs_row, inputs_column, k)) | |||
tvt = TrainValTest(*tvt) | |||
pred.append(tvt) | |||
return pred | |||
def forward(self, last_layer_repr: List[torch.Tensor]) -> List[List[torch.Tensor]]: | |||
res = [] | |||
for i, fam in enumerate(self.data.relation_families): | |||
fam_pred = [] | |||
for k, r in enumerate(fam.relation_types): | |||
pred = [] | |||
pred += self._get_tvt(r, ['edges_pos', 'edges_neg'], | |||
r.node_type_row, r.node_type_column, k, last_layer_repr, self.decoders[i]) | |||
pred += self._get_tvt(r, ['edges_back_pos', 'edges_back_neg'], | |||
r.node_type_column, r.node_type_row, k, last_layer_repr, self.decoders[i]) | |||
pred = RelationPredictions(*pred) | |||
fam_pred.append(pred) | |||
fam_pred = RelationFamilyPredictions(fam_pred) | |||
res.append(fam_pred) | |||
res = Predictions(res) | |||
return res |
@@ -35,6 +35,8 @@ class TrainValTest(object): | |||
class PreparedRelationType(RelationTypeBase): | |||
edges_pos: TrainValTest | |||
edges_neg: TrainValTest | |||
edges_back_pos: TrainValTest | |||
edges_back_neg: TrainValTest | |||
@dataclass | |||
@@ -48,6 +50,10 @@ class PreparedData(object): | |||
relation_families: List[PreparedRelationFamily] | |||
def _empty_edge_list_tvt() -> TrainValTest: | |||
return TrainValTest(*[ torch.zeros((0, 2), dtype=torch.long) for _ in range(3) ]) | |||
def train_val_test_split_edges(edges: torch.Tensor, | |||
ratios: TrainValTest) -> TrainValTest: | |||
@@ -115,12 +121,15 @@ def prep_rel_one_node_type(r: RelationType, | |||
adj_mat = r.adjacency_matrix | |||
adj_mat_train, edges_pos, edges_neg = prepare_adj_mat(adj_mat, ratios) | |||
adj_mat_back_train, edges_back_pos, edges_back_neg = \ | |||
None, _empty_edge_list_tvt(), _empty_edge_list_tvt() | |||
print('adj_mat_train:', adj_mat_train) | |||
adj_mat_train = norm_adj_mat_one_node_type(adj_mat_train) | |||
return PreparedRelationType(r.name, r.node_type_row, r.node_type_column, | |||
adj_mat_train, None, edges_pos, edges_neg) | |||
adj_mat_train, adj_mat_back_train, edges_pos, edges_neg, | |||
edges_back_pos, edges_back_neg) | |||
def prep_rel_two_node_types_sym(r: RelationType, | |||
@@ -128,12 +137,14 @@ def prep_rel_two_node_types_sym(r: RelationType, | |||
adj_mat = r.adjacency_matrix | |||
adj_mat_train, edges_pos, edges_neg = prepare_adj_mat(adj_mat, ratios) | |||
edges_back_pos, edges_back_neg = \ | |||
_empty_edge_list_tvt(), _empty_edge_list_tvt() | |||
return PreparedRelationType(r.name, r.node_type_row, | |||
r.node_type_column, | |||
norm_adj_mat_two_node_types(adj_mat_train), | |||
norm_adj_mat_two_node_types(adj_mat_train.transpose(0, 1)), | |||
edges_pos, edges_neg) | |||
edges_pos, edges_neg, edges_back_pos, edges_back_neg) | |||
def prep_rel_two_node_types_asym(r: RelationType, | |||
@@ -144,23 +155,20 @@ def prep_rel_two_node_types_asym(r: RelationType, | |||
prepare_adj_mat(r.adjacency_matrix, ratios) | |||
else: | |||
adj_mat_train, edges_pos, edges_neg = \ | |||
None, torch.zeros((0, 2)), torch.zeros((0, 2)) | |||
None, _empty_edge_list_tvt(), _empty_edge_list_tvt() | |||
if r.adjacency_matrix_backward is not None: | |||
adj_mat_back_train, edges_back_pos, edges_back_neg = \ | |||
prepare_adj_mat(r.adjacency_matrix_backward, ratios) | |||
else: | |||
adj_mat_back_train, edges_back_pos, edges_back_neg = \ | |||
None, torch.zeros((0, 2)), torch.zeros((0, 2)) | |||
edges_pos = torch.cat((edges_pos, edges_back_pos), dim=0) | |||
edges_neg = torch.cat((edges_neg, edges_back_neg), dim=0) | |||
None, _empty_edge_list_tvt(), _empty_edge_list_tvt() | |||
return PreparedRelationType(r.name, r.node_type_row, | |||
r.node_type_column, | |||
norm_adj_mat_two_node_types(adj_mat_train), | |||
norm_adj_mat_two_node_types(adj_mat_back_train), | |||
edges_pos, edges_neg) | |||
edges_pos, edges_neg, edges_back_pos, edges_back_neg) | |||
def prepare_relation_type(r: RelationType, | |||
@@ -180,7 +188,9 @@ def prepare_relation_type(r: RelationType, | |||
return prep_rel_two_node_types_asym(r, ratios) | |||
def prepare_relation_family(fam: RelationFamily) -> PreparedRelationFamily: | |||
def prepare_relation_family(fam: RelationFamily, | |||
ratios: TrainValTest) -> PreparedRelationFamily: | |||
relation_types = [] | |||
for r in fam.relation_types: | |||
@@ -196,7 +206,7 @@ def prepare_training(data: Data, ratios: TrainValTest) -> PreparedData: | |||
if not isinstance(data, Data): | |||
raise ValueError('data must be of class Data') | |||
relation_families = [ prepare_relation_family(fam) \ | |||
relation_families = [ prepare_relation_family(fam, ratios) \ | |||
for fam in data.relation_families ] | |||
return PreparedData(data.node_types, relation_families) |
@@ -6,7 +6,10 @@ | |||
from icosagon.input import OneHotInputLayer | |||
from icosagon.convlayer import DecagonLayer | |||
from icosagon.declayer import DecodeLayer | |||
from icosagon.declayer import DecodeLayer, \ | |||
Predictions, \ | |||
RelationFamilyPredictions, \ | |||
RelationPredictions | |||
from icosagon.decode import DEDICOMDecoder | |||
from icosagon.data import Data | |||
from icosagon.trainprep import prepare_training, \ | |||
@@ -17,21 +20,36 @@ import torch | |||
def test_decode_layer_01(): | |||
d = Data() | |||
d.add_node_type('Dummy', 100) | |||
fam = d.add_relation_family('Dummy-Dummy', 0, 0, False) | |||
fam.add_relation_type('Dummy Relation 1', 0, 0, | |||
torch.rand((100, 100), dtype=torch.float32).round().to_sparse()) | |||
prep_d = prepare_training(d, TrainValTest(.8, .1, .1)) | |||
in_layer = OneHotInputLayer(d) | |||
d_layer = DecagonLayer(in_layer.output_dim, 32, d) | |||
seq = torch.nn.Sequential(in_layer, d_layer) | |||
last_layer_repr = seq(None) | |||
dec = DecodeLayer(input_dim=d_layer.output_dim, data=prep_d, keep_prob=1., | |||
decoder_class=DEDICOMDecoder, activation=lambda x: x) | |||
pred_adj_matrices = dec(last_layer_repr) | |||
assert isinstance(pred_adj_matrices, dict) | |||
assert len(pred_adj_matrices) == 1 | |||
assert isinstance(pred_adj_matrices[0, 0], list) | |||
assert len(pred_adj_matrices[0, 0]) == 1 | |||
activation=lambda x: x) | |||
pred = dec(last_layer_repr) | |||
assert isinstance(pred, Predictions) | |||
assert isinstance(pred.relation_families, list) | |||
assert len(pred.relation_families) == 1 | |||
assert isinstance(pred.relation_families[0], RelationFamilyPredictions) | |||
assert isinstance(pred.relation_families[0].relation_types, list) | |||
assert len(pred.relation_families[0].relation_types) == 1 | |||
assert isinstance(pred.relation_families[0].relation_types[0], RelationPredictions) | |||
tmp = pred.relation_families[0].relation_types[0] | |||
assert isinstance(tmp.edges_pos, TrainValTest) | |||
assert isinstance(tmp.edges_neg, TrainValTest) | |||
assert isinstance(tmp.edges_back_pos, TrainValTest) | |||
assert isinstance(tmp.edges_back_neg, TrainValTest) | |||
def test_decode_layer_02(): | |||