# # Copyright (C) Stanislaw Adaszewski, 2020 # License: GPLv3 # from icosagon.input import OneHotInputLayer from icosagon.convlayer import DecagonLayer from icosagon.declayer import DecodeLayer from icosagon.decode import DEDICOMDecoder from icosagon.data import Data import torch def test_decode_layer_01(): d = Data() d.add_node_type('Dummy', 100) d.add_relation_type('Dummy Relation 1', 0, 0, torch.rand((100, 100), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(d) d_layer = DecagonLayer(in_layer.output_dim, 32, d) seq = torch.nn.Sequential(in_layer, d_layer) last_layer_repr = seq(None) dec = DecodeLayer(input_dim=d_layer.output_dim, data=d, keep_prob=1., decoder_class=DEDICOMDecoder, activation=lambda x: x) pred_adj_matrices = dec(last_layer_repr) assert isinstance(pred_adj_matrices, dict) assert len(pred_adj_matrices) == 1 assert isinstance(pred_adj_matrices[0, 0], list) assert len(pred_adj_matrices[0, 0]) == 1 def test_decode_layer_02(): d = Data() d.add_node_type('Dummy', 100) d.add_relation_type('Dummy Relation 1', 0, 0, torch.rand((100, 100), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(d) d_layer = DecagonLayer(in_layer.output_dim, 32, d) dec_layer = DecodeLayer(input_dim=d_layer.output_dim, data=d, keep_prob=1., decoder_class=DEDICOMDecoder, activation=lambda x: x) seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) pred_adj_matrices = seq(None) assert isinstance(pred_adj_matrices, dict) assert len(pred_adj_matrices) == 1 assert isinstance(pred_adj_matrices[0, 0], list) assert len(pred_adj_matrices[0, 0]) == 1