from icosagon.data import Data from icosagon.bulkdec import BulkDecodeLayer from icosagon.input import OneHotInputLayer from icosagon.convlayer import DecagonLayer import torch def test_bulk_decode_layer_01(): data = Data() data.add_node_type('Dummy', 100) fam = data.add_relation_family('Dummy-Dummy', 0, 0, False) fam.add_relation_type('Dummy Relation 1', torch.rand((100, 100), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(data) d_layer = DecagonLayer(in_layer.output_dim, 32, data) dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, keep_prob=1., activation=lambda x: x) seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) pred = seq(None) assert isinstance(pred, list) assert len(pred) == len(data.relation_families) assert isinstance(pred[0], torch.Tensor) assert len(pred[0].shape) == 3 assert len(pred[0]) == len(data.relation_families[0].relation_types) assert pred[0].shape[1] == data.node_types[0].count assert pred[0].shape[2] == data.node_types[0].count def test_bulk_decode_layer_02(): data = Data() data.add_node_type('Foo', 100) data.add_node_type('Bar', 50) fam = data.add_relation_family('Foo-Bar', 0, 1, False) fam.add_relation_type('Foobar Relation 1', torch.rand((100, 50), dtype=torch.float32).round().to_sparse(), torch.rand((50, 100), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(data) d_layer = DecagonLayer(in_layer.output_dim, 32, data) dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, keep_prob=1., activation=lambda x: x) seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) pred = seq(None) assert isinstance(pred, list) assert len(pred) == len(data.relation_families) assert isinstance(pred[0], torch.Tensor) assert len(pred[0].shape) == 3 assert len(pred[0]) == len(data.relation_families[0].relation_types) assert pred[0].shape[1] == data.node_types[0].count assert pred[0].shape[2] == data.node_types[1].count def test_bulk_decode_layer_03(): data = Data() data.add_node_type('Foo', 100) data.add_node_type('Bar', 50) fam = data.add_relation_family('Foo-Bar', 0, 1, False) fam.add_relation_type('Foobar Relation 1', torch.rand((100, 50), dtype=torch.float32).round().to_sparse(), torch.rand((50, 100), dtype=torch.float32).round().to_sparse()) fam.add_relation_type('Foobar Relation 2', torch.rand((100, 50), dtype=torch.float32).round().to_sparse(), torch.rand((50, 100), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(data) d_layer = DecagonLayer(in_layer.output_dim, 32, data) dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, keep_prob=1., activation=lambda x: x) seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) pred = seq(None) assert isinstance(pred, list) assert len(pred) == len(data.relation_families) assert isinstance(pred[0], torch.Tensor) assert len(pred[0].shape) == 3 assert len(pred[0]) == len(data.relation_families[0].relation_types) assert pred[0].shape[1] == data.node_types[0].count assert pred[0].shape[2] == data.node_types[1].count def test_bulk_decode_layer_03_big(): data = Data() data.add_node_type('Foo', 2000) data.add_node_type('Bar', 2100) fam = data.add_relation_family('Foo-Bar', 0, 1, False) fam.add_relation_type('Foobar Relation 1', torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse(), torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse()) fam.add_relation_type('Foobar Relation 2', torch.rand((2000, 2100), dtype=torch.float32).round().to_sparse(), torch.rand((2100, 2000), dtype=torch.float32).round().to_sparse()) in_layer = OneHotInputLayer(data) d_layer = DecagonLayer(in_layer.output_dim, 32, data) dec_layer = BulkDecodeLayer(input_dim=d_layer.output_dim, data=data, keep_prob=1., activation=lambda x: x) seq = torch.nn.Sequential(in_layer, d_layer, dec_layer) pred = seq(None) assert isinstance(pred, list) assert len(pred) == len(data.relation_families) assert isinstance(pred[0], torch.Tensor) assert len(pred[0].shape) == 3 assert len(pred[0]) == len(data.relation_families[0].relation_types) assert pred[0].shape[1] == data.node_types[0].count assert pred[0].shape[2] == data.node_types[1].count