|
- from icosagon.input import InputLayer, \
- OneHotInputLayer
- from icosagon.convlayer import DecagonLayer, \
- Convolutions
- from icosagon.data import Data
- import torch
- import pytest
- from icosagon.convolve import DropoutGraphConvActivation
- from decagon_pytorch.convolve import MultiDGCA
- import decagon_pytorch.convolve
-
-
- def _make_symmetric(x: torch.Tensor):
- x = (x + x.transpose(0, 1)) / 2
- return x
-
-
- def _symmetric_random(n_rows, n_columns):
- return _make_symmetric(torch.rand((n_rows, n_columns),
- dtype=torch.float32).round())
-
-
- def _some_data_with_interactions():
- d = Data()
- d.add_node_type('Gene', 1000)
- d.add_node_type('Drug', 100)
-
- fam = d.add_relation_family('Drug-Gene', 1, 0, True)
- fam.add_relation_type('Target',
- torch.rand((100, 1000), dtype=torch.float32).round())
-
- fam = d.add_relation_family('Gene-Gene', 0, 0, True)
- fam.add_relation_type('Interaction',
- _symmetric_random(1000, 1000))
-
- fam = d.add_relation_family('Drug-Drug', 1, 1, True)
- fam.add_relation_type('Side Effect: Nausea',
- _symmetric_random(100, 100))
- fam.add_relation_type('Side Effect: Infertility',
- _symmetric_random(100, 100))
- fam.add_relation_type('Side Effect: Death',
- _symmetric_random(100, 100))
- return d
-
-
- def test_decagon_layer_01():
- d = _some_data_with_interactions()
- in_layer = InputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
- seq = torch.nn.Sequential(in_layer, d_layer)
- _ = seq(None)
-
-
- def test_decagon_layer_02():
- d = _some_data_with_interactions()
- in_layer = OneHotInputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
- seq = torch.nn.Sequential(in_layer, d_layer)
- _ = seq(None)
-
-
- def test_decagon_layer_03():
- d = _some_data_with_interactions()
- in_layer = OneHotInputLayer(d)
- d_layer = DecagonLayer(in_layer.output_dim, 32, d)
-
- assert d_layer.input_dim == [ 1000, 100 ]
- assert d_layer.output_dim == [ 32, 32 ]
- assert d_layer.data == d
- assert d_layer.keep_prob == 1.
- assert d_layer.rel_activation(0.5) == 0.5
- x = torch.tensor([-1, 0, 0.5, 1])
- assert (d_layer.layer_activation(x) == torch.nn.functional.relu(x)).all()
-
- assert not d_layer.is_sparse
- assert len(d_layer.next_layer_repr) == 2
-
- for i in range(2):
- assert len(d_layer.next_layer_repr[i]) == 2
- assert isinstance(d_layer.next_layer_repr[i], torch.nn.ModuleList)
- assert isinstance(d_layer.next_layer_repr[i][0], Convolutions)
- assert isinstance(d_layer.next_layer_repr[i][0].node_type_column, int)
- assert isinstance(d_layer.next_layer_repr[i][0].convolutions, torch.nn.ModuleList)
- assert all([
- isinstance(dgca, DropoutGraphConvActivation) \
- for dgca in d_layer.next_layer_repr[i][0].convolutions
- ])
- assert all([
- dgca.output_dim == 32 \
- for dgca in d_layer.next_layer_repr[i][0].convolutions
- ])
-
-
- def test_decagon_layer_04():
-
-
- d = Data()
- d.add_node_type('Dummy', 100)
- fam = d.add_relation_family('Dummy-Dummy', 0, 0, True)
- fam.add_relation_type('Dummy Relation',
- _symmetric_random(100, 100).to_sparse())
-
- in_layer = OneHotInputLayer(d)
-
- multi_dgca = MultiDGCA([10], 32,
- [r.adjacency_matrix for r in fam.relation_types],
- keep_prob=1., activation=lambda x: x)
-
- d_layer = DecagonLayer(in_layer.output_dim, 32, d,
- keep_prob=1., rel_activation=lambda x: x,
- layer_activation=lambda x: x)
-
- assert isinstance(d_layer.next_layer_repr[0][0].convolutions[0],
- DropoutGraphConvActivation)
-
- weight = d_layer.next_layer_repr[0][0].convolutions[0].graph_conv.weight
- assert isinstance(weight, torch.Tensor)
-
- assert len(multi_dgca.dgca) == 1
- assert isinstance(multi_dgca.dgca[0],
- decagon_pytorch.convolve.DropoutGraphConvActivation)
-
- multi_dgca.dgca[0].graph_conv.weight = weight
-
- seq = torch.nn.Sequential(in_layer, d_layer)
- out_d_layer = seq(None)
- out_multi_dgca = multi_dgca(in_layer(None))
-
- assert isinstance(out_d_layer, list)
- assert len(out_d_layer) == 1
-
- assert torch.all(out_d_layer[0] == out_multi_dgca)
-
-
- def test_decagon_layer_05():
-
-
-
- d = Data()
- d.add_node_type('Dummy', 100)
- fam = d.add_relation_family('Dummy-Dummy', 0, 0, True)
- fam.add_relation_type('Dummy Relation 1',
- _symmetric_random(100, 100).to_sparse())
- fam.add_relation_type('Dummy Relation 2',
- _symmetric_random(100, 100).to_sparse())
-
- in_layer = OneHotInputLayer(d)
-
- multi_dgca = MultiDGCA([100, 100], 32,
- [r.adjacency_matrix for r in fam.relation_types],
- keep_prob=1., activation=lambda x: x)
-
- d_layer = DecagonLayer(in_layer.output_dim, output_dim=32, data=d,
- keep_prob=1., rel_activation=lambda x: x,
- layer_activation=lambda x: x)
-
- assert all([
- isinstance(dgca, DropoutGraphConvActivation) \
- for dgca in d_layer.next_layer_repr[0][0].convolutions
- ])
-
- weight = [ dgca.graph_conv.weight \
- for dgca in d_layer.next_layer_repr[0][0].convolutions ]
- assert all([
- isinstance(w, torch.Tensor) \
- for w in weight
- ])
-
- assert len(multi_dgca.dgca) == 2
- for i in range(2):
- assert isinstance(multi_dgca.dgca[i],
- decagon_pytorch.convolve.DropoutGraphConvActivation)
-
- for i in range(2):
- multi_dgca.dgca[i].graph_conv.weight = weight[i]
-
- seq = torch.nn.Sequential(in_layer, d_layer)
- out_d_layer = seq(None)
- x = in_layer(None)
- out_multi_dgca = multi_dgca([ x[0], x[0] ])
-
- assert isinstance(out_d_layer, list)
- assert len(out_d_layer) == 1
-
- assert torch.all(out_d_layer[0] == out_multi_dgca)
-
-
- class Dummy1(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.whatever = torch.nn.Parameter(torch.rand((10, 10)))
-
-
- class Dummy2(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = Dummy1()
-
-
- class Dummy3(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = [ Dummy1() ]
-
-
- class Dummy4(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = torch.nn.ModuleList([ Dummy1() ])
-
-
- class Dummy5(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = [ torch.nn.ModuleList([ Dummy1() ]) ]
-
-
- class Dummy6(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = torch.nn.ModuleList([ torch.nn.ModuleList([ Dummy1() ]) ])
-
-
- class Dummy7(torch.nn.Module):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- self.dummy_1 = torch.nn.ModuleList([ torch.nn.ModuleList() ])
- self.dummy_1[0].append(Dummy1())
-
-
- def test_module_nesting_01():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_2 = Dummy2()
- dummy_2 = dummy_2.to(device)
- assert dummy_2.dummy_1.whatever.device == device
-
-
- def test_module_nesting_02():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_3 = Dummy3()
- dummy_3 = dummy_3.to(device)
- assert dummy_3.dummy_1[0].whatever.device != device
-
-
- def test_module_nesting_03():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_4 = Dummy4()
- dummy_4 = dummy_4.to(device)
- assert dummy_4.dummy_1[0].whatever.device == device
-
-
- def test_module_nesting_04():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_5 = Dummy5()
- dummy_5 = dummy_5.to(device)
- assert dummy_5.dummy_1[0][0].whatever.device != device
-
-
- def test_module_nesting_05():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_6 = Dummy6()
- dummy_6 = dummy_6.to(device)
- assert dummy_6.dummy_1[0][0].whatever.device == device
-
-
- def test_module_nesting_06():
- if torch.cuda.device_count() == 0:
- pytest.skip('No CUDA support on this host')
- device = torch.device('cuda:0')
- dummy_7 = Dummy7()
- dummy_7 = dummy_7.to(device)
- assert dummy_7.dummy_1[0][0].whatever.device == device
|